共 50 条
Stationary bootstrapping for non-parametric estimator of nonlinear autoregressive model
被引:10
|作者:
Hwang, Eunju
[1
]
Shin, Dong Wan
[1
]
机构:
[1] Ewha Womans Univ, Inst Math Sci, Seoul 120750, South Korea
关键词:
Nonlinear autoregressive process;
non-parametric kernel estimator;
stationary bootstrap procedure;
Primary: 62G08;
62M05;
Secondary: 62F40;
TIME-SERIES;
DENSITY-ESTIMATION;
STRONG-CONVERGENCE;
ERGODICITY;
IDENTIFICATION;
JACKKNIFE;
D O I:
10.1111/j.1467-9892.2010.00699.x
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We consider stationary bootstrap approximation of the non-parametric kernel estimator in a general kth-order nonlinear autoregressive model under the conditions ensuring that the nonlinear autoregressive process is a geometrically Harris ergodic stationary Markov process. We show that the stationary bootstrap procedure properly estimates the distribution of the non-parametric kernel estimator. A simulation study is provided to illustrate the theory and to construct confidence intervals, which compares the proposed method favorably with some other bootstrap methods.
引用
收藏
页码:292 / 303
页数:12
相关论文