Stationary bootstrapping for non-parametric estimator of nonlinear autoregressive model

被引:10
|
作者
Hwang, Eunju [1 ]
Shin, Dong Wan [1 ]
机构
[1] Ewha Womans Univ, Inst Math Sci, Seoul 120750, South Korea
关键词
Nonlinear autoregressive process; non-parametric kernel estimator; stationary bootstrap procedure; Primary: 62G08; 62M05; Secondary: 62F40; TIME-SERIES; DENSITY-ESTIMATION; STRONG-CONVERGENCE; ERGODICITY; IDENTIFICATION; JACKKNIFE;
D O I
10.1111/j.1467-9892.2010.00699.x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider stationary bootstrap approximation of the non-parametric kernel estimator in a general kth-order nonlinear autoregressive model under the conditions ensuring that the nonlinear autoregressive process is a geometrically Harris ergodic stationary Markov process. We show that the stationary bootstrap procedure properly estimates the distribution of the non-parametric kernel estimator. A simulation study is provided to illustrate the theory and to construct confidence intervals, which compares the proposed method favorably with some other bootstrap methods.
引用
收藏
页码:292 / 303
页数:12
相关论文
共 50 条