Dynamic Gelation of Conductive Polymer Nanocomposites Consisting of Poly(3-hexylthiophene) and ZnO Nanowires

被引:2
|
作者
Santos, Franceska A. [1 ]
Christensen, Dana J., II [1 ]
Cox, Ryan Y. [1 ]
Schultz, Spencer A. [1 ]
Fernando, Raymond H. [1 ]
Zhang, Shanju [1 ]
机构
[1] Calif Polytech State Univ San Luis Obispo, Dept Chem & Biochem, San Luis Obispo, CA 93407 USA
来源
JOURNAL OF COMPOSITES SCIENCE | 2021年 / 5卷 / 08期
基金
美国国家科学基金会;
关键词
gelation; conductive polymer composites; ZnO nanowires; rheology; WALLED CARBON NANOTUBES; CRYSTALLIZATION KINETICS; CHARGE-TRANSPORT; THIN-FILMS; MORPHOLOGY; GELS; PERFORMANCE; HYDROGEL; AGGREGATION; TRANSITION;
D O I
10.3390/jcs5080199
中图分类号
TB33 [复合材料];
学科分类号
摘要
The sol-gel transition of conductive nanocomposites consisting of poly(3-hexylthiophene) (P3HT) and ZnO nanowires in o-dichlorobenzene (o-DCB) has been investigated rheologically. The physical gelation of P3HT in o-DCB spontaneously occurs upon adding the small amount of ZnO nanowires. The rheological properties of the P3HT/ZnO nanocomposite gels have been systematically studied by varying factors such as polymer concentration, nanowire loading, and temperature. The nanocomposite gel exhibits shear-thinning in the low shear rate range and shear-thickening in the high shear rate range. The elastic storage modulus of the nanocomposite gel gradually increases with gelation time and is consistently independent of frequency at all investigated ranges. The isothermal gelation kinetics has been analyzed by monitoring the storage modulus with gelation time, and the data are well fitted with a first-order rate law. The structural analysis data reveal that the polymer forms the crystalline layer coated on ZnO nanowires. A fringed micelle model is proposed to explain the possible gelation mechanism.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Solvent and temperature-dependent conductive behavior of poly(3-hexylthiophene)
    Pan, Likun
    Sun, Zhuo
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2009, 70 (07) : 1113 - 1116
  • [32] Strong photoluminescence enhancement of silicon nanowires by poly (3-hexylthiophene) deposition
    Rahmani, M.
    Jerbi, L.
    Meftah, A.
    JOURNAL OF LUMINESCENCE, 2020, 217
  • [33] Electrochemically Synthesized Poly(3-hexylthiophene) Nanowires as Photosensitive Neuronal Interfaces
    Gaspar, Szilveszter
    Ravasenga, Tiziana
    Munteanu, Raluca-Elena
    David, Sorin
    Benfenati, Fabio
    Colombo, Elisabetta
    MATERIALS, 2021, 14 (16)
  • [34] Energetics of excited states in the conjugated polymer poly(3-hexylthiophene)
    Deibel, Carsten
    Mack, Daniel
    Gorenflot, Julien
    Schoell, Achim
    Krause, Stefan
    Reinert, Friedrich
    Rauh, Daniel
    Dyakonov, Vladimir
    PHYSICAL REVIEW B, 2010, 81 (08):
  • [35] Regiochemistry of Poly(3-hexylthiophene): Synthesis and Investigation of a Conducting Polymer
    Pappenfus, Ted M.
    Hermanson, David L.
    Kohl, Stuart G.
    Melby, Jacob H.
    Thoma, Laura M.
    Carpenter, Nancy E.
    da Silva Filho, Demetrio A.
    Bredas, Jean-Luc
    JOURNAL OF CHEMICAL EDUCATION, 2010, 87 (05) : 522 - 525
  • [36] Photoluminescence in poly(3-hexylthiophene)
    Samuel, IDW
    Magnani, L
    Rumbles, G
    Murray, K
    Stone, BM
    Moratti, SC
    Holmes, AB
    OPTICAL PROBES OF CONJUGATED POLYMERS, 1997, 3145 : 163 - 170
  • [37] Optical Bistability of Waveguide Consisting of Poly(3-hexylthiophene)/Polymethylmethacrylate Composite Film
    Ochiai, Shizuyasu
    Mototani, Suguru
    Ramajothi, Jayaraman
    Kojima, Kenzo
    Mizutani, Teruyoshi
    LINEAR AND NONLINEAR OPTICS OF ORGANIC MATERIALS VIII, 2008, 7049
  • [38] Corrosion protection of steel by poly(3-hexylthiophene) polymer blends
    Hernandez-Martinez, Diego
    Leon-Silva, Ulises
    Elena Nicho, Maria
    ANTI-CORROSION METHODS AND MATERIALS, 2015, 62 (04) : 229 - 240
  • [39] A photoswitchable poly(3-hexylthiophene)
    Bauer, Peter
    Sommer, Michael
    Thurn, Johann
    Paers, Martti
    Koehler, Juergen
    Thelakkat, Mukundan
    CHEMICAL COMMUNICATIONS, 2013, 49 (41) : 4637 - 4639
  • [40] Preparation and characterization of electrospun fibers containing poly(3-hexylthiophene) and poly(3-hexylthiophene)/CdS
    Hernandez-Martinez, D.
    Martinez-Alonso, C.
    Castillo-Ortega, M. M.
    Arenas-Arrocena, M. C.
    Nicho, M. E.
    SYNTHETIC METALS, 2015, 209 : 496 - 501