Homogenization of a non-homogeneous heat conducting fluid

被引:2
|
作者
Feireisl, Eduard [1 ]
Lu, Yong [2 ]
Sun, Yongzhong [2 ]
机构
[1] Acad Sci Czech Republ, Inst Math, Zitna 25, CZ-11567 Prague 1, Czech Republic
[2] Nanjing Univ, Dept Math, 22 Hankou Rd, Nanjing 210093, Peoples R China
基金
欧洲研究理事会;
关键词
Non-homogeneous Navier-Stokes system; homogenization; heat-conducting fluid; incompressible fluid; Brinkman law; NAVIER-STOKES EQUATIONS; VOLUME DISTRIBUTION; TINY HOLES;
D O I
10.3233/ASY-201658
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a non-homogeneous incompressible and heat conducting fluid confined to a 3D domain perforated by tiny holes. The ratio of the diameter of the holes and their mutual distance is critical, the former being equal to epsilon(3) , the latter proportional to epsilon, where epsilon is a small parameter. We identify the asymptotic limit for epsilon -> 0, in which the momentum equation contains a friction term of Brinkman type determined uniquely by the viscosity and geometric properties of the perforation. Besides the inhomogeneity of the fluid, we allow the viscosity and the heat conductivity coefficient to depend on the temperature, where the latter is determined via the Fourier law with homogenized (oscillatory) heat conductivity coefficient that is different for the fluid and the solid holes. To the best of our knowledge, this is the first result in the critical case for the inhomogenous heat-conducting fluid.
引用
收藏
页码:327 / 346
页数:20
相关论文
共 50 条
  • [21] ADSORBTION HEAT OF INTERACTING MOLECULES ON A NON-HOMOGENEOUS SURFACE
    TOVBIN, YK
    ZHURNAL FIZICHESKOI KHIMII, 1982, 56 (03): : 691 - 695
  • [22] Heat Equation with Memory in Anisotropic and Non-Homogeneous Media
    Yong, Jiongmin
    Zhang, Xu
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2011, 27 (02) : 219 - 254
  • [23] HOMOGENEOUS AND NON-HOMOGENEOUS DUALITY
    PASHENKOV, VV
    RUSSIAN MATHEMATICAL SURVEYS, 1987, 42 (05) : 95 - 121
  • [24] HOMOGENIZATION FOR 3-DIMENSIONAL ELASTICITY PROBLEM IN THIN NON-HOMOGENEOUS BAR
    KOZLOVA, MV
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1989, (05): : 6 - 10
  • [25] The breaking of a non-homogeneous fiber embedded in an infinite non-homogeneous medium
    Vrbik, J
    Singh, BM
    Rokne, J
    Dhaliwal, RS
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2003, 54 (02): : 212 - 223
  • [26] The breaking of a non-homogeneous fiber embedded in an infinite non-homogeneous medium
    J. Vrbik
    B. M. Singh
    J. Rokne
    R. S. Dhaliwal
    Zeitschrift für angewandte Mathematik und Physik ZAMP, 2003, 54 : 212 - 223
  • [27] Multiscale modeling of fluid permeability of a non-homogeneous porous media
    Berndt, Edward
    Sevostianov, Igor
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2012, 56 : 99 - 110
  • [28] NON-HOMOGENEOUS CONNECTIONS
    GRIFONE, J
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1970, 270 (11): : 714 - &
  • [29] Non-homogeneous Spaces (χ, ν)
    Yang, Dachun
    Yang, Dongyong
    Hu, Guoen
    HARDY SPACE H1 WITH NON-DOUBLING MEASURES AND THEIR APPLICATIONS, 2013, 2084 : 413 - 415
  • [30] NON-HOMOGENEOUS LUNG
    READ, J
    FOWLER, KT
    AUSTRALASIAN ANNALS OF MEDICINE, 1962, 11 (02): : 129 - &