Homogenization of a non-homogeneous heat conducting fluid

被引:2
|
作者
Feireisl, Eduard [1 ]
Lu, Yong [2 ]
Sun, Yongzhong [2 ]
机构
[1] Acad Sci Czech Republ, Inst Math, Zitna 25, CZ-11567 Prague 1, Czech Republic
[2] Nanjing Univ, Dept Math, 22 Hankou Rd, Nanjing 210093, Peoples R China
基金
欧洲研究理事会;
关键词
Non-homogeneous Navier-Stokes system; homogenization; heat-conducting fluid; incompressible fluid; Brinkman law; NAVIER-STOKES EQUATIONS; VOLUME DISTRIBUTION; TINY HOLES;
D O I
10.3233/ASY-201658
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a non-homogeneous incompressible and heat conducting fluid confined to a 3D domain perforated by tiny holes. The ratio of the diameter of the holes and their mutual distance is critical, the former being equal to epsilon(3) , the latter proportional to epsilon, where epsilon is a small parameter. We identify the asymptotic limit for epsilon -> 0, in which the momentum equation contains a friction term of Brinkman type determined uniquely by the viscosity and geometric properties of the perforation. Besides the inhomogeneity of the fluid, we allow the viscosity and the heat conductivity coefficient to depend on the temperature, where the latter is determined via the Fourier law with homogenized (oscillatory) heat conductivity coefficient that is different for the fluid and the solid holes. To the best of our knowledge, this is the first result in the critical case for the inhomogenous heat-conducting fluid.
引用
收藏
页码:327 / 346
页数:20
相关论文
共 50 条
  • [1] Homogenization with non-homogeneous plastic flow
    Anglade, Elsa
    Sellier, Alain
    Papon, Aurelie
    Aubert, Jean-Emmanuel
    INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, 2023, 47 (17) : 3209 - 3233
  • [2] Bloch wave homogenization of a non-homogeneous Neumann problem
    Ortega, Jaime
    Martin, Jorge San
    Smaranda, Loredana
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2007, 58 (06): : 969 - 993
  • [3] Inherent Effects of Homogenization in Non-Homogeneous Vehicle Platoons
    Seeland, Felix
    Miekautsch, Fritz
    Fay, Alexander
    Horn, Joachim
    IFAC PAPERSONLINE, 2021, 54 (02): : 314 - 320
  • [4] Bloch wave homogenization of a non-homogeneous Neumann problem
    Jaime Ortega
    Jorge San Martín
    Loredana Smaranda
    Zeitschrift für angewandte Mathematik und Physik, 2007, 58 : 969 - 993
  • [5] ON THE PROPAGATION OF WAVES IN A NON-HOMOGENEOUS FLUID
    ELDEWIK, FS
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1988, 19 (09): : 901 - 905
  • [6] OSCILLATIONS IN A NON-HOMOGENEOUS VISCOUS FLUID
    DORE, BD
    TELLUS, 1968, 20 (03): : 514 - &
  • [7] GEOSTROPHIC MOTION OF A NON-HOMOGENEOUS FLUID
    HIDE, R
    JOURNAL OF FLUID MECHANICS, 1971, 49 (OCT29) : 745 - &
  • [8] Homogenization of the stokes problem with non-homogeneous slip boundary conditions
    Universite Pierre et Marie Curie, Paris, France
    Math Methods Appl Sci, 11 (857-881):
  • [9] Error estimates in periodic homogenization with a non-homogeneous Dirichlet condition
    Griso, G.
    ASYMPTOTIC ANALYSIS, 2014, 87 (1-2) : 91 - 121
  • [10] Homogenization of the Stokes problem with non-homogeneous slip boundary conditions
    Cioranescu, D
    Donato, P
    Ene, HI
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1996, 19 (11) : 857 - 881