Laser direct-metallization of silicon carbide without metal deposition

被引:0
|
作者
Salama, IA [1 ]
Kar, A [1 ]
Quick, NR [1 ]
机构
[1] Univ Cent Florida, CREOL, Sch Opt, Laser Aided Mfg Mat & Microproc Lab, Orlando, FL 32816 USA
关键词
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Laser direct-write (LDW) is used for in-situ metallization in single crystal 4H- and 6H-SiC wafers without metal deposition. Nanosecond-pulsed Nd:YAG (lambda = 1064 and 532 nm) and excimer (lambda= 193, 248 and 351 nm) lasers are utilized to create metal-like conductive phases in both n-type and p-type SiC wafers. Frequency-doubled Nd:YAG irradiation( E-photon < E-g) induces a carbon rich conductive phase due to thermal decomposition of SiC. However, pulsed excimer laser irradiation (E-photon > E-g) produces a Si- rich conductive phases due to carbon photo ablation. The Schottky barrier heights (SBH) between the laser-metallized layer and the original n-type SiC (N-D = 10(18) cm(-3)) is determined to be 0.8 eV and 1.0 eV by the current-voltage and capacitance-voltage measurements at room temperature, respectively. Linear transmission line method pattern is directly fabricated in n-type doped (N-D = 10(18) cm(-3)) SiC substrate by pulsed laser irradiation allowing to extract the specific contact resistance (r(c)) of the laser fabricated metal-like tracks (r(c) = 0.04-0.12 Omegacm(2)).The specific contact resistance is unchanged after annealing up to 3 hrs at 950degreesC.
引用
收藏
页码:75 / 80
页数:6
相关论文
共 50 条
  • [21] Additive laser metal deposition onto silicon
    Azizi, Arad
    Daeumer, Matthias A.
    Schiffres, Scott N.
    ADDITIVE MANUFACTURING, 2019, 25 : 390 - 398
  • [22] Direct, parallel nanopatterning of silicon carbide by laser nanosphere lithography
    Battula, Arvind
    Theppakuttai, Senthil
    Chen, Shaochen
    JOURNAL OF MICROLITHOGRAPHY MICROFABRICATION AND MICROSYSTEMS, 2006, 5 (01):
  • [23] Advances in the modeling of laser direct metal deposition
    Pinkerton, Andrew J.
    JOURNAL OF LASER APPLICATIONS, 2015, 27
  • [24] Photoluminescence in hexagonal silicon carbide by direct femtosecond laser writing
    Castelletto, S.
    Almutairi, A. F. M.
    Kumagai, K.
    Katkus, T.
    Hayasaki, Y.
    Johnson, B. C.
    Juomos, S.
    OPTICS LETTERS, 2018, 43 (24) : 6077 - 6080
  • [25] Laser direct write of conducting and insulating tracks in silicon carbide
    Sengupta, DK
    Quick, NR
    Kar, A
    MATERIALS DEVELOPMENT FOR DIRECT WRITE TECHNOLOGIES, 2000, 624 : 127 - 133
  • [26] Innovations in laser cladding and direct metal deposition
    Brueckner, Frank
    Nowotny, Steffen
    Leyens, Christoph
    HIGH POWER LASER MATERIALS PROCESSING: LASERS, BEAM DELIVERY, DIAGNOSTICS, AND APPLICATIONS, 2012, 8239
  • [27] Direct laser metal deposition of Inconel 738
    Ramakrishnan, A.
    Dinda, G. P.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2019, 740 : 1 - 13
  • [28] Front side metallization of silicon solar cells by direct printing of molten metal
    Gerdes, B.
    Jehle, M.
    Lass, N.
    Riegger, L.
    Spribille, A.
    Linse, M.
    Clement, F.
    Zengerle, R.
    Koltay, P.
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2018, 180 : 83 - 90
  • [29] Synthesis of silicon carbide nanorods without defects by direct heating method
    Wu, Renbing B.
    Yang, Guang Yi
    Pan, Yi
    Chen, Jian Jun
    JOURNAL OF MATERIALS SCIENCE, 2007, 42 (11) : 3800 - 3804
  • [30] Large-area pulsed laser deposition of silicon carbide films
    Yang, D
    Xue, L
    McCague, CM
    Norton, PR
    Zhang, CS
    AMORPHOUS AND HETEROGENEOUS SILICON-BASED FILMS-2002, 2002, 715 : 527 - 532