A new mechanism for the production of highly vibrationally excited OH in the mesosphere:: An ab initio study of the reactions of O2(A 3Σu+ and A′ 3Δu)+H -: art. no. 104315
被引:3
|
作者:
Liu, JK
论文数: 0引用数: 0
h-index: 0
机构:Emory Univ, Cherry L Emerson Ctr Sci Computat, Atlanta, GA 30322 USA
Liu, JK
Zhang, P
论文数: 0引用数: 0
h-index: 0
机构:Emory Univ, Cherry L Emerson Ctr Sci Computat, Atlanta, GA 30322 USA
Zhang, P
Morokuma, K
论文数: 0引用数: 0
h-index: 0
机构:
Emory Univ, Cherry L Emerson Ctr Sci Computat, Atlanta, GA 30322 USAEmory Univ, Cherry L Emerson Ctr Sci Computat, Atlanta, GA 30322 USA
Morokuma, K
[1
]
Sharma, RD
论文数: 0引用数: 0
h-index: 0
机构:Emory Univ, Cherry L Emerson Ctr Sci Computat, Atlanta, GA 30322 USA
Sharma, RD
机构:
[1] Emory Univ, Cherry L Emerson Ctr Sci Computat, Atlanta, GA 30322 USA
[2] Emory Univ, Dept Chem, Atlanta, GA 30322 USA
[3] USAF, Res Lab, Space Vehicles Directorate VSBYB, Bedford, MA 01731 USA
In an attempt to explain the observed nightglow emission from OH(v=10) in the mesosphere that has the energy greater than the exothermicity of the H+O-3 reaction, potential energy surfaces were calculated for reactions of high lying electronic states of O-2(A (3)Sigma(u)(+) and A(') (3)Delta(u)) with atomic hydrogen H(S-2) to produce the ground state products OH((2)Pi)+O(P-3). From collinear two-dimensional scans, several adiabatic and nonadiabatic pathways have been identified. Multiconfigurational single and double excitation configuration interaction calculations show that the adiabatic pathways on a (4)Delta potential surface from O-2(A(') (3)Delta)+H and a (4)Sigma(+) potential surface from O-2(A (3)Sigma(u)(+))+H are the most favorable, with the zero-point corrected barrier heights of as low as 0.191 and 0.182 eV, respectively, and the reactions are fast. The transition states for these pathways are collinear and early, and the reaction coordinate suggests that the potential energy release of ca. 3.8 eV (larger than the energy required to excite OH to v=10) is likely to favor high vibrational excitation.