Learning Causal Graphs in Manufacturing Domains using Structural Equation Models

被引:0
|
作者
Kertel, Maximilian [1 ]
Harmeling, Stefan [2 ]
Pauly, Markus [3 ]
机构
[1] BMW Grp, Technol Dev Battery Cell, Munich, Germany
[2] TU Dortmund Univ, Dept Comp Sci, Dortmund, Germany
[3] TU Dortmund Univ, Dept Stat, Dortmund, Germany
关键词
Causal Discovery; Bayesian Networks; Industry; 4.0; DISCOVERY;
D O I
10.1109/AI4I54798.2022.00010
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Many production processes are characterized by numerous and complex cause-and-effect relationships. Since they are only partially known they pose a challenge to effective process control. In this work we present how Structural Equation Models can be used for deriving cause-and-effect relationships from the combination of prior knowledge and process data in the manufacturing domain. Compared to existing applications, we do not assume linear relationships leading to more informative results.
引用
收藏
页码:14 / 19
页数:6
相关论文
共 50 条
  • [41] Structural Intervention Distance for Evaluating Causal Graphs
    Peters, Jonas
    Buehlmann, Peter
    [J]. NEURAL COMPUTATION, 2015, 27 (03) : 771 - 799
  • [42] Causal Language in Structural Equation Modeling
    Sanchez-Iglesias, Ivan
    Aguayo-Estremera, Raimundo
    Miguel-Alvaro, Alejandro
    Paniagua, David
    [J]. REVISTA IBEROAMERICANA DE DIAGNOSTICO Y EVALUACION-E AVALIACAO PSICOLOGICA, 2022, 5 (66): : 35 - 51
  • [43] Causal ABMs: Learning Plausible Causal Models using Agent-based Modeling
    Valogianni, Konstantina
    Padmanabhan, Balaji
    [J]. KDD'22 WORKSHOP ON CAUSAL DISCOVERY, VOL 185, 2022, 185 : 3 - 28
  • [44] Including Phenotypic Causal Networks in Genome-Wide Association Studies Using Mixed Effects Structural Equation Models
    Momen, Mehdi
    Mehrgardi, Ahmad Ayatollahi
    Roudbar, Mahmoud Amiri
    Kranis, Andreas
    Pinto, Renan Mercuri
    Valente, Bruno D.
    Morota, Gota
    Rosa, Gullherme J. M.
    Gianola, Daniel
    [J]. FRONTIERS IN GENETICS, 2018, 9
  • [45] Inferring causal relationships among growth curve traits of Lori-Bakhtiari sheep using structural equation models
    Masari, Hesam Amou Posht-e
    Hafezian, Seyyed Hassan
    Mokhtari, Morteza
    Mianji, Ghodratollah Rahimi
    Abdollahi-Arpanahi, Rostam
    [J]. SMALL RUMINANT RESEARCH, 2021, 203
  • [46] Incorporating Molecular Markers and Causal Structure among Traits Using a Smith-Hazel Index and Structural Equation Models
    Hidalgo-Contreras, Juan Valente
    Salinas-Ruiz, Josafhat
    Eskridge, Kent M.
    Baenziger, Stephen P.
    [J]. AGRONOMY-BASEL, 2021, 11 (10):
  • [47] Cost-Optimal Learning of Causal Graphs
    Kocaoglu, Murat
    Dimakis, Alexandros
    Vishwanath, Sriram
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 70, 2017, 70
  • [48] Structural learning of causal networks
    He Y.
    Jia J.
    Geng Z.
    [J]. Behaviormetrika, 2017, 44 (1) : 287 - 305
  • [49] Learning the Form of Causal Relationships Using Hierarchical Bayesian Models
    Lucas, Christopher G.
    Griffiths, Thomas L.
    [J]. COGNITIVE SCIENCE, 2010, 34 (01) : 113 - 147
  • [50] Learning to Learn Causal Models
    Kemp, Charles
    Goodman, Noah D.
    Tenenbaum, Joshua B.
    [J]. COGNITIVE SCIENCE, 2010, 34 (07) : 1185 - 1243