Nanocrystal Ordering Enhances Thermal Transport and Mechanics in Single-Domain Colloidal Nanocrystal Superlattices

被引:12
|
作者
Wang, Zhongyong [1 ,2 ]
Christodoulides, Alexander D. [3 ]
Dai, Lingyun [3 ]
Zhou, Yang [4 ]
Dai, Rui [1 ]
Xu, Yifei [1 ]
Nian, Qiong [1 ]
Wang, Junlan [4 ]
Malen, Jonathan A. [3 ]
Wang, Robert Y. [1 ]
机构
[1] Arizona State Univ, Sch Engn Matter Transport & Energy, Tempe, AZ 85287 USA
[2] Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USA
[3] Carnegie Mellon Univ, Dept Mech Engn, Pittsburgh, PA 15213 USA
[4] Univ Washington, Dept Mech Engn, Seattle, WA 98195 USA
基金
美国国家科学基金会;
关键词
nanocrystal; superlattice; ligands; thermal transport; mechanics; SELF-ASSEMBLED MONOLAYERS; CHARGE-TRANSPORT; SIZE; CONDUCTIVITY; ORGANIZATION; ENTROPY; LIGANDS; SOLIDS; PBSE;
D O I
10.1021/acs.nanolett.2c00544
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Colloidal nanocrystal (NC) assemblies are promising for optoelectronic, photovoltaic, and thermoelectric applications. However, using these materials can be challenging in actual devices because they have a limited range of thermal conductivity and elastic modulus, which results in heat dissipation and mechanical robustness challenges. Here, we report thermal transport and mechanical measurements on single-domain colloidal PbS nanocrystal superlattices (NCSLs) that have long-range order as well as measurements on nanocrystal films (NCFs) that are comparatively disordered. Over an NC diameter range of 3.0-6.1 nm, we observe that NCSLs have thermal conductivities and Young's moduli that are up to similar to 3 times higher than those of the corresponding NCFs. We also find that these properties are more sensitive to NC diameter in NCSLs relative to NCFs. Our measurements computational modeling indicate that stronger ligand-ligand interactions due to enhanced ligand interdigitation and alignment in NCSLs account for the improved thermal transport and mechanical properties.
引用
收藏
页码:4669 / 4676
页数:8
相关论文
共 50 条
  • [41] Differentiating Thermal Conductances at Semiconductor Nanocrystal/Ligand and Ligand/Solvent Interfaces in Colloidal Suspensions
    Liang, Yuxing
    Diroll, Benjamin T.
    Wong, Kae-Lin
    Harvey, Samantha M.
    Wasielewski, Michael
    Ong, Wee-Liat
    Schaller, Richard D.
    Malen, Jonathan A.
    NANO LETTERS, 2023, 23 (09) : 3687 - 3693
  • [42] Phonon dispersion and thermal conductivity of nanocrystal superlattices using three-dimensional atomistic models
    Zanjani, Mehdi B.
    Lukes, Jennifer R.
    JOURNAL OF APPLIED PHYSICS, 2014, 115 (14)
  • [43] Molecular Dynamics Study on the Anisotropic Thermal Conductivity of Helium-Xenon Binary Nanocrystal Superlattices
    Bai, Dan
    INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2009, 30 (03) : 919 - 933
  • [44] ELECTRON TRANSPORT IN SINGLE-DOMAIN FERROELECTRIC BARIUM TITANATE
    BERGLUND, CN
    BAER, WS
    PHYSICAL REVIEW, 1967, 157 (02): : 358 - &
  • [45] Nanocrystal Formation in the Quartz Single Crystal due to Thermal Vibrations of Dislocations
    Vettegren', V. I.
    Mamalimov, R. I.
    PHYSICS OF THE SOLID STATE, 2016, 58 (08) : 1659 - 1662
  • [46] Nanocrystal formation in the quartz single crystal due to thermal vibrations of dislocations
    V. I. Vettegren’
    R. I. Mamalimov
    Physics of the Solid State, 2016, 58 : 1659 - 1662
  • [47] FERROMAGNETIC ORDERING IN SYSTEMS OF MAGNETIC MOMENTS OF SINGLE-DOMAIN PARTICLES.
    Kokorin, V.V.
    Min'kov, A.V.
    Osipenko, I.A.
    Bulletin of the Academy of Sciences of the U.S.S.R. Physical series, 1985, 50 (08): : 179 - 181
  • [48] FERROMAGNETIC ORDERING IN SYSTEMS OF SINGLE-DOMAIN PARTICLE MAGNETIC-MOMENTS
    KOKORIN, VV
    MINKOV, AV
    OSIPENKO, IA
    IZVESTIYA AKADEMII NAUK SSSR SERIYA FIZICHESKAYA, 1986, 50 (08): : 1643 - 1645
  • [49] Comparison of single-domain and dual-domain subsurface transport models
    Flach, GP
    Crisman, SA
    Molz, FJ
    GROUND WATER, 2004, 42 (06) : 815 - 828
  • [50] Surface chemistry mediates thermal transport in three-dimensional nanocrystal arrays
    Ong W.-L.
    Rupich S.M.
    Talapin D.V.
    McGaughey A.J.H.
    Malen J.A.
    Nature Materials, 2013, 12 (5) : 410 - 415