O3-based atomic layer deposition of hexagonal La2O3 films on Si(100) and Ge(100) substrates

被引:33
|
作者
Lamagna, L. [1 ]
Wiemer, C. [1 ]
Perego, M. [1 ]
Volkos, S. N. [1 ]
Baldovino, S. [2 ]
Tsoutsou, D. [1 ]
Schamm-Chardon, S. [3 ]
Coulon, P. E. [3 ]
Fanciulli, M. [1 ,2 ]
机构
[1] CNR, IMM, Lab MDM, I-20041 Agrate Brianza, MB, Italy
[2] Univ Milano Bicocca, Dipartimento Sci Mat, I-20126 Milan, Italy
[3] Univ Toulouse, CNRS, CEMES, NMat Grp, F-31055 Toulouse 4, France
关键词
OXIDE-SEMICONDUCTOR DEVICES; INTERFACE-STATE DENSITY; GATE-STACK TECHNOLOGY; X-RAY-DIFFRACTION; ELECTRICAL-PROPERTIES; THIN-FILMS; LANTHANUM; OZONE; DIELECTRICS; ALD;
D O I
10.1063/1.3499258
中图分类号
O59 [应用物理学];
学科分类号
摘要
The hexagonal phase of La2O3 is obtained upon vacuum annealing of hydroxilated La2O3 films grown with atomic layer deposition at 200 degrees C using La((PrCp)-Pr-i)(3) and O-3. A dielectric constant value of 24 +/- 2 and 22 +/- 1 is obtained on Si-based and Ge-based metal-oxide-semiconductor capacitors, respectively. However, the relatively good La2O3 dielectric properties are associated with significant interface reactivity on both semiconductor substrates. This leads to the identification of a minimum critical thickness that limits the scaling down of the equivalent oxide thickness of the stack. These findings are explained by the spontaneous formation of lanthanum silicate and germanate species which takes place during the growth and also upon annealing. Although the ultimate film thickness scalability remains an unsolved concern, the use of an O-3-based process is demonstrated to be a suitable solution to fabricate La2O3 films that can be successfully converted into the high-k hexagonal phase. (C) 2010 American Institute of Physics. [doi:10.1063/1.3499258]
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Atomic layer deposition growth reactions of Al2O3 on Si(100)-2 x 1
    Halls, MD
    Raghavachari, K
    JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (13): : 4058 - 4062
  • [22] Atomic layer deposition of La2O3 thin films by using an electron cyclotron resonance plasma source
    Kim, Beom-Yong
    Ko, Myoung-Gyun
    Lee, Eun-Joo
    Hong, Min-Soo
    Jeon, You-Jin
    Park, Jong-Wan
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2006, 49 (03) : 1303 - 1306
  • [23] In situ infrared spectroscopy during La2O3 atomic layer deposition using La(iPrCp)3 and H2O
    Sperling, Brent A.
    Maslar, James E.
    Ivanov, Sergei V.
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2018, 36 (03):
  • [24] Synthesis of nanocrystalline La2O3 powder at 100°C
    Murugan, AV
    Navale, SC
    Ravi, V
    MATERIALS LETTERS, 2006, 60 (06) : 848 - 849
  • [25] High-resolution TEM/STEM analysis of SiO2/Si(100) and La2O3/Si(100) interfaces
    Tanaka, Nobuo
    Yarnasaki, Jun
    Inamot, Shin
    Saitoh, Koh
    2006 INTERNATIONAL WORKSHOP ON NANO CMOS, PROCEEDINGS, 2006, : 110 - +
  • [26] Atomistics of Ge deposition on Si(100) by atomic layer epitaxy
    Lin, DS
    Wu, JL
    Pan, SY
    Chiang, TC
    PHYSICAL REVIEW LETTERS, 2003, 90 (04)
  • [27] Atomic layer deposition of TiN on Si (100) and Si (111) substrates
    Jeon, H
    Koo, JH
    Lee, JW
    Kim, YS
    Kang, KM
    Kim, YD
    Kim, YD
    NEW METHODS, MECHANISMS AND MODELS OF VAPOR DEPOSITION, 2000, 616 : 211 - 216
  • [28] Chemical and structural properties of atomic layer deposited La2O3 films capped with a thin Al2O3 layer
    Li, X. L.
    Tsoutsou, D.
    Scarel, G.
    Wiemer, C.
    Capelli, S. C.
    Volkos, S. N.
    Lamagna, L.
    Fanciulli, M.
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2009, 27 (02): : L1 - L7
  • [29] H2O- and O3-Based Atomic Layer Deposition of High-κ Dielectric Films on GeO2 Passivation Layers
    Delabie, A.
    Alian, A.
    Bellenger, F.
    Caymax, M.
    Conard, T.
    Franquet, A.
    Sioncke, S.
    Van Elshocht, S.
    Heyns, M. M.
    Meuris, M.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (10) : G163 - G167
  • [30] Competing Mechanisms in Atomic Layer Deposition of Er2O3 versus La2O3 from Cyclopentadienyl Precursors
    Nolan, Michael
    Elliott, Simon D.
    CHEMISTRY OF MATERIALS, 2010, 22 (01) : 117 - 129