Quenching of O2(b1σg + ) by O(3P) atoms. Effect of gas temperature

被引:12
|
作者
Booth, J. P. [1 ]
Chatterjee, A. [1 ]
Guaitella, O. [1 ]
Lopaev, D. [2 ]
Zyryanov, S. [2 ]
Volynets, A. [2 ]
Rakhimova, T. [2 ]
Voloshin, D. [2 ]
Chukalovsky, A. [2 ]
Mankelevich, Yu [2 ]
Guerra, V [3 ]
机构
[1] Univ Paris Sud, UPMC Univ Paris 06, Lab Phys Plasmas, CNRS,Eole Polytech, Paris, France
[2] Lomonosov Moscow State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia
[3] Univ Lisbon, Inst Plasmas & Fusao Nucl, Inst Super Tecn, Lisbon, Portugal
来源
PLASMA SOURCES SCIENCE & TECHNOLOGY | 2022年 / 31卷 / 06期
基金
俄罗斯科学基金会;
关键词
oxygen discharge; reactive quenching; optical emission spectroscopy; absorption spectroscopy; dc glow discharge; partial modulation; SINGLET MOLECULAR-OXYGEN; RATE CONSTANTS; ELECTRON-IMPACT; CROSS-SECTIONS; O-2; DISCHARGE; O(D-1); KINETICS; N-2; EXCITATION;
D O I
10.1088/1361-6595/ac7749
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present a detailed study of the density and kinetics of O-2(b(1)sigma(g) (+)) in steady-state and partially-modulated DC positive column discharges in pure O-2 for gas pressures of 0.3-10 Torr and 10-40 mA current. The time-resolved density of O-2(b(1)sigma(g) (+)) was determined by absolutely-calibrated optical emission spectroscopy (OES) of the A-band emission at 762 nm. Additionally, the O-2(b(1)sigma(g) (+)) density was determined by VUV absorption spectroscopy using the Fourier-transform spectrometer at the DESIRS beamline at Synchrotron Soleil, allowing the absolute calibration of OES to be confirmed. The O(P-3) atoms were detected by time-resolved sub-Doppler cavity ringdown spectroscopy (CRDS) using the O(P-3(2)) -> O(D-1(2)) transition at 630 nm. The CRDS measurements were synchronized to the discharge modulation allowing the O(P-3) dynamics to be observed. As a function of gas pressure the O-2(b(1)sigma(g) (+)) density passes through a maximum at about 2 Torr. Below this maximum, the O-2(b(1)sigma(g) (+)) density increases with discharge current, whereas above this maximum it decreases with current. The gas temperature increases with pressure and current, from 300 to 800 K. These observations can only be explained by the existence of fast quenching process of O-2(b(1)sigma(g) (+)) by O(P-3), with a rate that increases strongly with gas temperature, i.e. with a significant energy barrier. The data are interpreted using a 1D self-consistent model of the O-2 discharge. The best fit of this model to all experimental data (including the O-2(b(1)sigma(g) (+)) average density as a function of pressure and current, the radial profiles, and the temporal response to current modulation) is achieved using a rate constant of k (Q) = 10(-10) exp(-3700/T) cm(3) s(-1).
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Photodissociation of O2 at 157 nm:: Experimental observation of anisotropy mixing in the O2+hv→O(3P)+O(3P) channel
    Lin, JJ
    Hwang, DW
    Lee, YT
    Yang, XM
    JOURNAL OF CHEMICAL PHYSICS, 1998, 109 (05): : 1758 - 1762
  • [42] Temperature retrieval of near space with the combined use of O2(a1△g) and O2(b1Σg+) dayglow emissions under self-absorption effect correction
    Wang, Daoqi
    Li, Faquan
    He, Weiwei
    Wang, Zhihua
    Li, Haotian
    Wu, Kuijun
    OPTICS EXPRESS, 2024, 32 (17): : 29830 - 29854
  • [43] QUENCHING OF O2(SIGMA-1(G)+) BY GROUND-STATE O2
    THOMAS, RGO
    THRUSH, BA
    JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS II, 1975, 71 : 664 - 667
  • [44] Observation of the χb1(3P) and χb2(3P) and Measurement of their Masses
    Sirunyan, A. M.
    Tumasyan, A.
    Adam, W.
    Ambrogi, F.
    Asilar, E.
    Bergauer, T.
    Brandstetter, J.
    Dragicevic, M.
    Eroe, J.
    Del Valle, A. Escalante
    Flechl, M.
    Fruehwirth, R.
    Ghete, V. M.
    Hrubec, J.
    Jeitler, M.
    Krammer, N.
    Kraetschmer, I.
    Liko, D.
    Madlener, T.
    Mikulec, I.
    Rad, N.
    Rohringer, H.
    Schieck, J.
    Schoefbeck, R.
    Spanring, M.
    Spitzbart, D.
    Taurok, A.
    Waltenberger, W.
    Wittmann, J.
    Wulz, C. -E.
    Zarucki, M.
    Chekhovsky, V.
    Mossolov, V.
    Gonzalez, J. Suarez
    De Wolf, E. A.
    Di Croce, D.
    Janssen, X.
    Lauwers, J.
    Pieters, M.
    De Klundert, M. Van
    Van Haevermaet, H.
    Van Mechelen, P.
    Van Remortel, N.
    Abu Zeid, S.
    Blekman, F.
    D'Hondt, J.
    De Bruyn, I.
    De Clercq, J.
    Deroover, K.
    Flouris, G.
    PHYSICAL REVIEW LETTERS, 2018, 121 (09)
  • [45] Photodissociation of Ozone from 321 to 329 nm: The Relative Yields of O(3P2) with O2(X 3Σg-), O2(a 1Δg) and O2(b lΣg+)
    Ulrich, C. K.
    Chen, J.
    Tokel, O.
    Houston, P. L.
    Grebenshchikov, S. Yu.
    JOURNAL OF PHYSICAL CHEMISTRY A, 2013, 117 (46): : 12011 - 12019
  • [46] Determination of absolute O(3P) and O2(a1Δg) densities and kinetics in fully modulated O2 dc glow discharges from the O2(X3σg-) afterglow recovery dynamics
    Booth, J-P
    Chatterjee, A.
    Guaitella, O.
    Sousa, J. Santos
    Lopaev, D.
    Zyryanov, S.
    Rakhimova, T.
    Voloshin, D.
    Mankelevich, Yu
    de Oliveira, N.
    Nahon, L.
    PLASMA SOURCES SCIENCE & TECHNOLOGY, 2020, 29 (11):
  • [47] QUENCHING OF O2(B1SIGMA+)
    MYERS, GH
    OBRIEN, RJ
    ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 1970, 171 (01) : 224 - &
  • [48] Solvent and Heavy-Atom Effects on the O2(X3Σg-) → O2(b1Σg+) Absorption Transition
    Bregnhoj, Mikkel
    Kraegpoth, Mikkel V.
    Sorensen, Rasmus Juhl
    Westberg, Michael
    Ogilby, Peter R.
    JOURNAL OF PHYSICAL CHEMISTRY A, 2016, 120 (42): : 8285 - 8296
  • [49] Observation of fast O2(a1Δ) quenching in the O/O2/O3 system
    Azyazov, V. N.
    Kabir, H. M.
    Heaven, M. C.
    HIGH ENERGY /AVERAGE POWER LASERS AND INTENSE BEAM APPLICATIONS, 2007, 6454
  • [50] CLASSICAL DYNAMICS OF THE REACTION OF S(3P) WITH O2(3-SIGMA-G-)
    MURRELL, JN
    CRAVEN, W
    FARANTOS, SC
    MOLECULAR PHYSICS, 1983, 49 (05) : 1077 - 1084