Application of nuclear reaction geometry for 3He depth profiling in nuclear ceramics

被引:24
|
作者
Trocellier, P [1 ]
Gosset, D
Simeone, D
Costantini, JM
Deschanels, X
Roudil, D
Serruys, Y
Grynszpan, R
Saudé, S
Beauvy, M
机构
[1] CEA Saclay, UMR 9956C CNRS, Lab Pierre Sue, F-91191 Gif Sur Yvette, France
[2] CEA Saclay, SRMP, DMN, DEN, F-91191 Gif Sur Yvette, France
[3] CEA Saclay, SRMA, DMN, DEN, F-91191 Gif Sur Yvette, France
[4] CEA, LMPA, SCDV, DIECS,DEN, F-30207 Bagnols Sur Ceze, France
[5] CEA Saclay, SRMP, DMN, DEN, F-91191 Gif Sur Yvette, France
[6] LOT, CTA, DGA, F-94114 Arcueil, France
[7] CNRS, UPR 209, LCMTR, F-94320 Thiais, France
[8] ENSAM, SINUMEF, F-75013 Paris, France
[9] CEA Cadarache, DEC, DEN, F-13108 St Paul Les Durance, France
关键词
helium; diffusion; mu NRA; waste management;
D O I
10.1016/S0168-583X(03)00914-5
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Direct observation of nuclear reactions leading to the emission of charged particles (p or alpha) allows to determine specifically the spatial distribution of isotopes of light elements from H-1 to Na-23 and despite low cross section values some heavier isotopes from Mg-24 to Zn-68. After a brief overview of the analytical capabilities offered by muNRA, this contribution is focussed on the measurement of the thermal diffusion coefficient of He-3 in crystalline ceramics. The experimental method is based on the observation of the He-3(d, p)alpha reaction. Due to the severe energy loss along the outgoing path, the choice of the detection of the high energy proton or recoil alpha nucleus depends on the average depth of the He-3 distribution. For near surface distributions (<2 mum), the detection of the alpha-particle gives a good depth resolution (50 nm). For larger depths (5 < x < 10 mum), the detection of the 12-14 MeV proton limits the depth resolution around 100 nm. After temperature-controlled annealing, the thermal diffusion coefficient can be deduced from the broadening of the helium-3 depth profile according to the classical Fick's law formalism by using the computing code SIMNRA. Several examples concerning simple oxides and more complex ceramics considered as potential nuclear waste forms or transmutation targets are then presented and discussed. (C) 2003 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:1077 / 1082
页数:6
相关论文
共 50 条
  • [41] NUCLEAR SUSCEPTIBILITY OF 3HE IN DILUTE SOLUTION IN LIQUID 4HE
    HUSA, DL
    EDWARDS, DO
    GAINES, JR
    PHYSICS LETTERS, 1966, 21 (01): : 28 - &
  • [42] DEPTH PROFILING OF DEUTERIUM USING NUCLEAR-REACTION ANALYSIS
    HUGHES, IG
    BEHRISCH, R
    MARTINELLI, AP
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 1993, 79 (1-4): : 487 - 489
  • [43] DIFFUSION STUDIES BY MEANS OF NUCLEAR-REACTION DEPTH PROFILING
    MOLLER, W
    HUFSCHMIDT, M
    PFEIFFER, T
    NUCLEAR INSTRUMENTS & METHODS, 1978, 149 (1-3): : 73 - 76
  • [44] A LIQUID 3HE TARGET FOR HIGH ENERGY NUCLEAR EXPERIMENTS
    MODENA, I
    MONTELATICI, V
    SCARAMUZZI, F
    NUCLEAR INSTRUMENTS & METHODS, 1966, 44 (01): : 175 - +
  • [45] The effects of nuclear structure on generalized parton distributions of 3He
    Scopetta, S
    NUCLEAR PHYSICS A, 2005, 755 : 523C - 526C
  • [46] Study of the nuclear fusion in a muonic dμ3He complex
    Bystritsky, VM
    Filipowicz, M
    Gerasimov, VV
    Knowles, PE
    Mulhauser, F
    Popov, NP
    Volnykh, VP
    Wozniak, J
    EUROPEAN PHYSICAL JOURNAL D, 2006, 38 (03): : 455 - 470
  • [47] NUCLEAR-SPIN EXCHANGE INTERACTION IN SOLID 3HE
    MEYER, H
    JOURNAL OF APPLIED PHYSICS, 1968, 39 (2P1) : 390 - &
  • [48] Electron scattering on 3He --A playground to test nuclear dynamics
    W. Glöckle
    J. Golak
    R. Skibiński
    H. Witała
    H. Kamada
    A. Nogga
    The European Physical Journal A - Hadrons and Nuclei, 2004, 21 : 335 - 348
  • [49] Nuclear antiferromagnetic exchange in two dimensional solid 3He
    Journal of Low Temperature Physics, 1995, 101 (3-4):
  • [50] Study of the nuclear fusion in a muonic dμ3He complex
    V. M. Bystritsky
    M. Filipowicz
    V. V. Gerasimov
    P. E. Knowles
    F. Mulhauser
    N. P. Popov
    V. P. Volnykh
    J. Woźniak
    The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics, 2006, 38 : 455 - 470