Thompson's group F and the linear group GL a (a"currency sign)

被引:0
|
作者
Wu, Yan [1 ]
Chen, Xiaoman [2 ]
机构
[1] Jiaxing Univ, Coll Math Phys & Informat Engn, Jiaxing 314033, Zhejiang, Peoples R China
[2] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金;
关键词
Finite decomposition complexity; Thompson's group F; Word-metric; Lipschitz map; Reduced tree diagram;
D O I
10.1007/s11401-011-0679-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The authors study the finite decomposition complexity of metric spaces of H, equipped with different metrics, where H is a subgroup of the linear group GL(a)(a"currency sign). It is proved that there is an injective Lipschitz map phi: (F, d (S) ) -> (H, d), where F is the Thompson's group, dS the word-metric of F with respect to the finite generating set S and d a metric of H. But it is not a proper map. Meanwhile, it is proved that phi: (F, d (S) ) -> (H, d (1)) is not a Lipschitz map, where d (1) is another metric of H.
引用
收藏
页码:863 / 884
页数:22
相关论文
共 50 条
  • [1] Thompson’s group F and the linear group GL∞(ℤ)
    Yan Wu
    Xiaoman Chen
    Chinese Annals of Mathematics, Series B, 2011, 32 : 863 - 884
  • [2] Thompson’s Group and the Linear Group GL∞(Z)
    Yan WU 1 Xiaoman CHEN 21 College of Mathematics Physics and Information Engineering
    Chinese Annals of Mathematics(Series B), 2011, 32 (06) : 863 - 884
  • [3] Deciding Conjugacy in Thompson's Group F in Linear Time
    Hossain, Nabil
    McGrail, Robert W.
    Belk, James
    Matucci, Francesco
    2013 15TH INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING (SYNASC 2013), 2014, : 89 - 96
  • [4] On the cogrowth of Thompson's group F
    Elder, Murray
    Rechnitzer, Andrew
    Wong, Thomas
    GROUPS COMPLEXITY CRYPTOLOGY, 2012, 4 (02) : 301 - 320
  • [5] THOMPSON'S GROUP F IS NOT LIOUVILLE
    Kaimanovich, Vadim A.
    GROUPS, GRAPHS AND RANDOM WALKS, 2017, 436 : 300 - 342
  • [6] Thompson's group F is not SCY
    Friedl, Stefan
    Vidussi, Stefano
    GROUPS GEOMETRY AND DYNAMICS, 2015, 9 (01) : 325 - 329
  • [7] Autostackability of Thompson's group F
    Corwin, Nathan
    Golan, Gili
    Hermiller, Susan
    Johnson, Ashley
    Sunic, Zoran
    JOURNAL OF ALGEBRA, 2020, 545 : 111 - 134
  • [8] CONJUGACY IN THOMPSON'S GROUP F
    Gill, Nick
    Short, Ian
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 141 (05) : 1529 - 1538
  • [9] Thompson's group F is not Kahler
    Napier, T
    Ramachandran, M
    TOPOLOGICAL AND ASYMPTOTIC ASPECTS OF GROUP THEORY, 2006, 394 : 197 - +
  • [10] Combinatorial properties of Thompson's group F
    Cleary, S
    Taback, J
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 356 (07) : 2825 - 2849