Torsion-free duality is Warfield

被引:1
|
作者
Faticoni, T
Goeters, HP
Vinsonhaler, C
Wickless, WJ
机构
[1] AUBURN UNIV,DEPT MATH,AUBURN,AL 36849
[2] UNIV CONNECTICUT,DEPT MATH,STORRS,CT 06269
关键词
D O I
10.1090/S0002-9939-97-03619-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that, under certain natural conditions, a duality discovered by R. B. Warfield, Jr., is the only duality on categories of finite-rank torsion-free modules over Dedekind domains.
引用
收藏
页码:961 / 969
页数:9
相关论文
共 50 条
  • [21] QUASIRELATIONS ON TORSION-FREE MODULES
    SWOKOWSK.EW
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (01): : 128 - &
  • [22] TORSION-FREE NILPOTENT VARIETIES
    LEVIN, F
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1973, 26 (5-6) : 757 - 765
  • [23] ABSOLUTELY TORSION-FREE RINGS
    RUBIN, RA
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 78 (05) : 854 - &
  • [24] ABSOLUTELY TORSION-FREE RINGS
    VIOLAPRIOLI, J
    PACIFIC JOURNAL OF MATHEMATICS, 1975, 56 (01) : 275 - 283
  • [25] ON TORSION-FREE NILPOTENT LOOPS
    Mostovoy, Jacob
    Perez-Izquierdo, Jose M.
    Shestakov, Ivan P.
    QUARTERLY JOURNAL OF MATHEMATICS, 2019, 70 (03): : 1091 - 1104
  • [26] Locally torsion-free modules
    Jayaram, C.
    Ugurlu, Emel Aslankarayigit
    Tekir, Unsal
    Koc, Suat
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2023, 22 (05)
  • [27] ABSOLUTELY TORSION-FREE RINGS
    RUBIN, RA
    PACIFIC JOURNAL OF MATHEMATICS, 1973, 46 (02) : 503 - 514
  • [28] TORSION IN PROFINITE COMPLETIONS OF TORSION-FREE GROUPS
    LUBOTZKY, A
    QUARTERLY JOURNAL OF MATHEMATICS, 1993, 44 (175): : 327 - 332
  • [29] Genera of the Torsion-Free Polyhedra
    Kolesnyk, P. O.
    UKRAINIAN MATHEMATICAL JOURNAL, 2014, 65 (10) : 1479 - 1489
  • [30] Genera of the Torsion-Free Polyhedra
    P. O. Kolesnyk
    Ukrainian Mathematical Journal, 2014, 65 : 1479 - 1489