EXISTENCE, UNIQUENESS AND PROPERTIES OF GLOBAL WEAK SOLUTIONS TO INTERDIFFUSION WITH VEGARD RULE

被引:5
|
作者
Sapa, Lucjan [1 ]
Bozek, Boguslaw [1 ]
Danielewski, Marek [2 ]
机构
[1] AGH Univ Sci & Technol, Fac Appl Math, Al Mickiewicza 30, PL-30059 Krakow, Poland
[2] AGH Univ Sci & Technol, Fac Mat Sci & Ceram, Al Mickiewicza 30, PL-30059 Krakow, Poland
关键词
Interdiffusion; Darken method; Vegard rule; parabolic nonlinear system; existence; uniqueness; properties of global weak solutions; Galerkin approximation; DIFFUSION;
D O I
10.12775/TMNA.2018.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the diffusional transport in an r-component solid solution. The model is expressed by the nonlinear system of strongly coupled parabolic differential equations with initial and nonlinear boundary conditions. The techniques involved are the local mass conservation law for fluxes, which are a sum of the diffusional and Darken drift terms, and the Vegard rule. The considered boundary conditions allow the physical system to be not only closed but also open. The theorems on existence, uniqueness and properties of global weak solutions are proved. The main tool used in the proof of the existence result is the Galerkin approximation method. The agreement between the theoretical results, numerical simulations and experimental data is shown.
引用
收藏
页码:423 / 448
页数:26
相关论文
共 50 条
  • [21] Linear Pantographic Sheets: Existence and Uniqueness of Weak Solutions
    Eremeyev, Victor A.
    dell'Isola, Francesco
    Boutin, Claude
    Steigmann, David
    JOURNAL OF ELASTICITY, 2018, 132 (02) : 175 - 196
  • [22] Global existence and uniqueness of solutions to a chemotaxis system
    Aissa, Naima
    Balehouane, Abdelkhalek
    APPLICABLE ANALYSIS, 2020, 99 (16) : 2833 - 2853
  • [23] Remarks on Parabolicity in a One-Dimensional Interdiffusion Model with the Vegard Rule
    Lucjan Sapa
    Bogusław Bożek
    Marek Danielewski
    Iranian Journal of Science and Technology, Transactions A: Science, 2021, 45 : 2135 - 2147
  • [24] Existence and uniqueness of global weak solutions to the equations describing the longitudinal oscillations of a viscoelastoplastic Ishlinskii material
    Amosov, A. A.
    Goshev, I. A.
    DOKLADY MATHEMATICS, 2006, 74 (02) : 623 - 627
  • [25] Existence and uniqueness of the global conservative weak solutions to the cubic Camassa-Holm-Type equation
    Zhu, Min
    Guo, Lijuan
    Wang, Ying
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2024, 132
  • [26] Invariant regions and global existence of uniqueness weak solutions for tridiagonal reaction-diffusion systems
    Barrouk, Nabila
    Abdelmalek, Karima
    Redjouh, Mounir
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2024, 69 (02): : 367 - 381
  • [27] EXISTENCE AND UNIQUENESS OF GLOBAL WEAK SOLUTIONS TO STRAIN-LIMITING VISCOELASTICITY WITH DIRICHLET BOUNDARY DATA
    Bulicek, Miroslav
    Patel, Victoria
    Suli, Endre
    Sengul, Yasemin
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2022, 54 (06) : 6186 - 6222
  • [28] Existence and uniqueness of global weak solutions to the equations describing the longitudinal oscillations of a viscoelastoplastic Ishlinskii material
    A. A. Amosov
    I. A. Goshev
    Doklady Mathematics, 2006, 74 : 623 - 627
  • [29] Existence and uniqueness of the global conservative weak solutions for a cubic Camassa-Holm type equation
    Chen, Rong
    Yang, Zhichun
    Zhou, Shouming
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 386 : 480 - 518
  • [30] Remarks on Parabolicity in a One-Dimensional Interdiffusion Model with the Vegard Rule
    Sapa, Lucjan
    Bozek, Boguslaw
    Danielewski, Marek
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2021, 45 (06): : 2135 - 2147