A linear mixed-effects model with heterogeneity in the random-effects population

被引:377
|
作者
Verbeke, G
Lesaffre, E
机构
关键词
empirical Bayes; goodness-of-fit test; longitudinal model; mixture model; normality assumption;
D O I
10.2307/2291398
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article investigates the impact of the normality assumption for random effects on their estimates in the linear mixed-effects model. II shows that if the distribution of random effects is a finite mixture of normal distributions, then the random effects may be badly estimated if normality is assumed, and the current methods for inspecting the appropriateness of the model assumptions are not sound. Further, it is argued that a better way to detect the components of the mixture is to build this assumption in the model and then ''compare'' the fitted model with the Gaussian model. All of this is illustrated on two practical examples.
引用
收藏
页码:217 / 221
页数:5
相关论文
共 50 条
  • [21] Testing random effects in linear mixed-effects models with serially correlated errors
    Drikvandi, Reza
    Noorian, Sajad
    [J]. BIOMETRICAL JOURNAL, 2019, 61 (04) : 802 - 812
  • [22] Frequentist model averaging for linear mixed-effects models
    Xinjie Chen
    Guohua Zou
    Xinyu Zhang
    [J]. Frontiers of Mathematics in China, 2013, 8 : 497 - 515
  • [23] A Linear Mixed-Effects Model of Wireless Spectrum Occupancy
    Pagadarai, Srikanth
    Wyglinski, Alexander M.
    [J]. EURASIP JOURNAL ON WIRELESS COMMUNICATIONS AND NETWORKING, 2010,
  • [24] Generalized quasi-linear mixed-effects model
    Saigusa, Yusuke
    Eguchi, Shinto
    Komori, Osamu
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2022, 31 (07) : 1280 - 1291
  • [25] DRUG DOSAGE INDIVIDUALIZATION BASED ON A RANDOM-EFFECTS LINEAR MODEL
    Diaz, Francisco J.
    Cogollo, Myladis R.
    Spina, Edoardo
    Santoro, Vincenza
    Rendon, Diego M.
    de Leon, Jose
    [J]. JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2012, 22 (03) : 463 - 484
  • [26] Frequentist model averaging for linear mixed-effects models
    Chen, Xinjie
    Zou, Guohua
    Zhang, Xinyu
    [J]. FRONTIERS OF MATHEMATICS IN CHINA, 2013, 8 (03) : 497 - 515
  • [27] A Linear Mixed-Effects Model of Wireless Spectrum Occupancy
    Srikanth Pagadarai
    AlexanderM Wyglinski
    [J]. EURASIP Journal on Wireless Communications and Networking, 2010
  • [28] A linear mixed-effects model for multivariate censored data
    Pan, W
    Louis, TA
    [J]. BIOMETRICS, 2000, 56 (01) : 160 - 166
  • [29] Nonparametric estimation of random effects densities in a linear mixed-effects model with Fourier-oscillating noise density
    Dang Duc Trong
    Cao Xuan Phuong
    Tran Quoc Viet
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2020, 49 (24) : 5988 - 6015
  • [30] Simultaneous fixed and random effects selection in finite mixture of linear mixed-effects models
    Du, Yeting
    Khalili, Abbas
    Neslehova, Johanna G.
    Steele, Russell J.
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2013, 41 (04): : 596 - 616