Spring-Block Model Reveals Region-Like Structures

被引:9
|
作者
Mate, Gabriell [1 ,2 ]
Neda, Zoltan [1 ]
Benedek, Jozsef [3 ]
机构
[1] Univ Babes Bolyai, Dept Theoret & Computat Phys, R-3400 Cluj Napoca, Romania
[2] Heidelberg Univ, Inst Theoret Phys, D-6900 Heidelberg, Germany
[3] Univ Babes Bolyai, Dept Human Geog, R-3400 Cluj Napoca, Romania
来源
PLOS ONE | 2011年 / 6卷 / 02期
关键词
FUNCTIONAL REGIONS; ECONOMIC-GEOGRAPHY; GRAVITY;
D O I
10.1371/journal.pone.0016518
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A mechanical spring-block model is used for realizing an objective space partition of settlements from a geographic territory in region-like structures. The method is based on the relaxation-dynamics of the spring-block system and reveals in a hierarchical manner region-like entities at different spatial scales. It takes into account in an elegant manner both the spatiality of the elements and the connectivity relations among them. Spatiality is taken into account by using the geographic coordinates of the settlements, and by detecting the neighbors with the help of a Delaunay triangulation. Connectivity between neighboring settlements are quantified using a Pearson-like correlation for the relative variation of a relevant socio-economic parameter (population size, GDP, tax payed per inhabitant, etc.). The method is implemented in an interactive JAVA application and it is applied with success for an artificially generated society and for the case of USA, Hungary and Transylvania.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] ANALYTICAL TREATMENT FOR A SPRING-BLOCK MODEL
    DING, EJ
    LU, YN
    [J]. PHYSICAL REVIEW LETTERS, 1993, 70 (23) : 3627 - 3630
  • [2] FRACTURING DESCRIBED BY A SPRING-BLOCK MODEL
    ANDERSEN, JV
    BRECHET, Y
    JENSEN, HJ
    [J]. EUROPHYSICS LETTERS, 1994, 26 (01): : 13 - 18
  • [3] HYSTERESIS IN A THEORETICAL SPRING-BLOCK MODEL
    LU, YN
    LIU, WS
    DING, EJ
    [J]. PHYSICAL REVIEW LETTERS, 1994, 72 (25) : 4005 - 4008
  • [4] A SIMPLIFIED SPRING-BLOCK MODEL OF EARTHQUAKES
    BROWN, SR
    SCHOLZ, CH
    RUNDLE, JB
    [J]. GEOPHYSICAL RESEARCH LETTERS, 1991, 18 (02) : 215 - 218
  • [5] A spring-block model for Barkhausen noise
    Kovács, K
    Brechet, Y
    Néda, Z
    [J]. MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2005, 13 (08) : 1341 - 1352
  • [6] Multistability and chaos in a spring-block model
    Ryabov, VB
    Ito, HM
    [J]. PHYSICAL REVIEW E, 1995, 52 (06): : 6101 - 6112
  • [7] Critical behavior of a spring-block model for magnetization
    Kovacs, K.
    Neda, Z.
    [J]. JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS, 2006, 8 (03): : 1093 - 1097
  • [8] Properties of events in a spring-block model of earthquakes
    Mirzaev, AT
    Sharov, MV
    [J]. FIZIKA ZEMLI, 1997, (03): : 82 - 86
  • [9] PROPAGATIVE SLIPPING MODES IN A SPRING-BLOCK MODEL
    ESPANOL, P
    [J]. PHYSICAL REVIEW E, 1994, 50 (01): : 227 - 235
  • [10] Predictions of large events on a spring-block model
    Zhang, SD
    Huang, ZQ
    Ding, EJ
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (15): : 4445 - 4455