The satisfiability problem for probabilistic ordered branching programs

被引:3
|
作者
Agrawal, M [1 ]
Thierauf, T [1 ]
机构
[1] Indian Inst Technol, Dept Comp Sci, Kanpur 208016, Uttar Pradesh, India
关键词
D O I
10.1109/CCC.1998.694593
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We show that the satisfiability problem for bounded error probabilistic ordered branching programs is NP - complete. IS the error is very small however (more precisely, if the error is bounded by the reciprocal of the width of the branching program), then we have a polynomial-time algorithm for the satisfiability problem.
引用
收藏
页码:81 / 90
页数:10
相关论文
共 50 条
  • [21] Branching rules for satisfiability
    1600, Kluwer Academic Publishers, Dordrecht, Netherlands (15):
  • [22] The Coin Problem, and Pseudorandomness for Branching Programs
    Brody, Joshua
    Verbin, Elad
    2010 IEEE 51ST ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, 2010, : 30 - 39
  • [23] PROBABILISTIC ANALYSIS OF THE DAVIS PUTNAM PROCEDURE FOR SOLVING THE SATISFIABILITY PROBLEM
    FRANCO, J
    PAULL, M
    DISCRETE APPLIED MATHEMATICS, 1983, 5 (01) : 77 - 87
  • [24] PROBABILISTIC ANALYSIS OF 2 HEURISTICS FOR THE 3-SATISFIABILITY PROBLEM
    CHAO, MT
    FRANCO, J
    SIAM JOURNAL ON COMPUTING, 1986, 15 (04) : 1106 - 1118
  • [25] Engineering the development of quantum programs: Application to the Boolean satisfiability problem
    Alonso, Diego
    Sanchez, Pedro
    Sanchez-Rubio, Francisco
    ADVANCES IN ENGINEERING SOFTWARE, 2022, 173
  • [26] Generalized Probabilistic Satisfiability
    De Bona, Glauber
    Cozman, Fabio G.
    Finger, Marcelo
    2013 BRAZILIAN CONFERENCE ON INTELLIGENT SYSTEMS (BRACIS), 2013, : 182 - 188
  • [27] Probabilistic satisfiability and decomposition
    Nguetse, GBD
    Hansen, P
    Jaumard, B
    SYMBOLIC AND QUANTITATIVE APPROACHES TO REASONING AND UNCERTAINTY, 1995, 946 : 151 - 161
  • [28] BRANCHING TIME AGENT'S LOGIC, SATISFIABILITY PROBLEM BY RULES IN REDUCED FORM
    Rybakov, V. V.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2019, 16 : 1158 - 1170
  • [29] BRANCHING-RULES FOR SATISFIABILITY
    HOOKER, JN
    VINAY, V
    JOURNAL OF AUTOMATED REASONING, 1995, 15 (03) : 359 - 383
  • [30] CORRECTION TO PROBABILISTIC ANALYSIS OF THE DAVIS PUTNAM PROCEDURE FOR SOLVING THE SATISFIABILITY PROBLEM
    FRANCO, J
    PLOTKIN, JM
    ROSENTHAL, JW
    DISCRETE APPLIED MATHEMATICS, 1987, 17 (03) : 295 - 299