Influence of fractional time order on W-shaped and Modulation Instability gain in fractional Nonlinear Schrodinger Equation

被引:15
|
作者
Houwe, Alphonse [1 ,2 ]
Abbagari, Souleymanou [3 ]
Nisar, Kottakkaran Sooppy [4 ]
Inc, Mustafa [5 ,6 ,7 ]
Doka, Serge Y. [8 ]
机构
[1] Univ Maroua, Dept Phys, Fac Sci, POB 814, Maroua, Cameroon
[2] Limbe Naut Arts & Fisheries Inst, Dept Marine Engn, POB 485, Limbe, Cameroon
[3] Univ Maroua, Fac Mines & Petr Ind, Dept Basic Sci, POB 08, Maroua, Cameroon
[4] Prince Sattam Bin Abdulaziz Univ, Dept Math, Wadi Aldawaser 11991, Saudi Arabia
[5] Biruni Univ, Dept Comp Engn, Istanbul, Turkey
[6] Firat Univ, Fac Sci, Dept Math, TR-23119 Elazig, Turkey
[7] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan
[8] Univ Ngaoundere, Dept Phys, Fac Sci, Ngaoundere, Cameroon
关键词
Fractional Nonlinear Schrbdinger Equation; W-shaped profile; Modulation Instability; ZAKHAROV-KUZNETSOV EQUATION; OPTICAL SOLITONS; WAVE SOLUTIONS; STABILITY;
D O I
10.1016/j.rinp.2021.104556
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we study the influence of fractional time derivative on W-shaped profile and Modulation Instability gain in fractional Nonlinear Schrodinger Equation (NLSE) which could be used to describe the propagation of pulses in random media, optical metamaterials and others nonlinear systems. We first imply the auxiliary equation method to set up bright, dark and W-shape optical solitons solutions under certain conditions. Thereafter, we graphically depict the obtained results which deeply show the potency of the fractional parameter order on the width and shape of the solitons. We then study the Modulation Instability (MI) gain spectra and we end up remarking that the MI gain sidebands and the MI gain shapes are mainly influenced by the fractional time derivative parameter compared to the previous works reported in nonlinear optic fibers (Wyller et al., 2002; Zhanga et al., 2017).
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Remarks on the inhomogeneous fractional nonlinear Schrodinger equation
    Saanouni, Tarek
    JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (08)
  • [42] ANALYTICAL SOLUTION OF THE SPACE-TIME FRACTIONAL NONLINEAR SCHRODINGER EQUATION
    Abdel-Salam, Emad A-B.
    Yousif, Eltayeb A.
    El-Aasser, Mostafa A.
    REPORTS ON MATHEMATICAL PHYSICS, 2016, 77 (01) : 19 - 34
  • [43] Nonlinear waves in the modulation instability regime for the fifth-order nonlinear Schrodinger equation
    Li, Ping
    Wang, Lei
    Kong, Liang-Qian
    Wang, Xin
    Xie, Ze-Yu
    APPLIED MATHEMATICS LETTERS, 2018, 85 : 110 - 117
  • [44] A second-order implicit difference scheme for the nonlinear time-space fractional Schrodinger equation
    Fei, Mingfa
    Wang, Nan
    Huang, Chengming
    Ma, Xiaohua
    APPLIED NUMERICAL MATHEMATICS, 2020, 153 : 399 - 411
  • [45] A WAVELET METHOD FOR NONLINEAR VARIABLE-ORDER TIME FRACTIONAL 2D SCHRODINGER EQUATION
    Hosseininia, Masoumeh
    Heydari, Mohammad Hossein
    Cattani, Carlo
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2021, 14 (07): : 2273 - 2295
  • [46] Large Time Asymptotics for the Fractional Order Cubic Nonlinear Schrodinger Equations
    Hayashi, Nakao
    Naumkin, Pavel I.
    ANNALES HENRI POINCARE, 2017, 18 (03): : 1025 - 1054
  • [47] High-order conservative schemes for the space fractional nonlinear Schrodinger equation
    Wang, Junjie
    APPLIED NUMERICAL MATHEMATICS, 2021, 165 : 248 - 269
  • [48] W-shaped, bright and kink solitons in the quadratic-cubic nonlinear Schrodinger equation with time and space modulated nonlinearities and potentials
    Triki, Houria
    Porsezian, K.
    Choudhuri, Amitava
    Dinda, P. Tchofo
    JOURNAL OF MODERN OPTICS, 2017, 64 (14) : 1368 - 1376
  • [49] Butterfly, S and W-shaped, parabolic, and other soliton solutions to the improved perturbed nonlinear Schrodinger equation
    Farah, Nighat
    Seadawy, Aly R. R.
    Ahmad, Sarfraz
    Rizvi, Syed T. R.
    OPTICAL AND QUANTUM ELECTRONICS, 2023, 55 (01)
  • [50] SPACE-TIME FRACTIONAL SCHRODINGER EQUATION WITH COMPOSITE TIME FRACTIONAL DERIVATIVE
    Dubbeldam, Johan L. A.
    Tomovski, Zivorad
    Sandev, Trifce
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2015, 18 (05) : 1179 - 1200