Influence of fractional time order on W-shaped and Modulation Instability gain in fractional Nonlinear Schrodinger Equation

被引:15
|
作者
Houwe, Alphonse [1 ,2 ]
Abbagari, Souleymanou [3 ]
Nisar, Kottakkaran Sooppy [4 ]
Inc, Mustafa [5 ,6 ,7 ]
Doka, Serge Y. [8 ]
机构
[1] Univ Maroua, Dept Phys, Fac Sci, POB 814, Maroua, Cameroon
[2] Limbe Naut Arts & Fisheries Inst, Dept Marine Engn, POB 485, Limbe, Cameroon
[3] Univ Maroua, Fac Mines & Petr Ind, Dept Basic Sci, POB 08, Maroua, Cameroon
[4] Prince Sattam Bin Abdulaziz Univ, Dept Math, Wadi Aldawaser 11991, Saudi Arabia
[5] Biruni Univ, Dept Comp Engn, Istanbul, Turkey
[6] Firat Univ, Fac Sci, Dept Math, TR-23119 Elazig, Turkey
[7] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan
[8] Univ Ngaoundere, Dept Phys, Fac Sci, Ngaoundere, Cameroon
关键词
Fractional Nonlinear Schrbdinger Equation; W-shaped profile; Modulation Instability; ZAKHAROV-KUZNETSOV EQUATION; OPTICAL SOLITONS; WAVE SOLUTIONS; STABILITY;
D O I
10.1016/j.rinp.2021.104556
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we study the influence of fractional time derivative on W-shaped profile and Modulation Instability gain in fractional Nonlinear Schrodinger Equation (NLSE) which could be used to describe the propagation of pulses in random media, optical metamaterials and others nonlinear systems. We first imply the auxiliary equation method to set up bright, dark and W-shape optical solitons solutions under certain conditions. Thereafter, we graphically depict the obtained results which deeply show the potency of the fractional parameter order on the width and shape of the solitons. We then study the Modulation Instability (MI) gain spectra and we end up remarking that the MI gain sidebands and the MI gain shapes are mainly influenced by the fractional time derivative parameter compared to the previous works reported in nonlinear optic fibers (Wyller et al., 2002; Zhanga et al., 2017).
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Brownian motion effects on W-shaped soliton and modulation instability gain of the (2+1)-dimensional nonlinear schrodinger equation
    Abbagari, Souleymanou
    Nyawo, Pelerine Tsogni
    Houwe, Alphonse
    Inc, Mustafa
    OPTICAL AND QUANTUM ELECTRONICS, 2022, 54 (01)
  • [2] Modulational instability in fractional nonlinear Schrodinger equation
    Zhang, Lifu
    He, Zenghui
    Conti, Claudio
    Wang, Zhiteng
    Hu, Yonghua
    Lei, Dajun
    Li, Ying
    Fan, Dianyuan
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 48 : 531 - 540
  • [3] W-shaped profile and breather-like soliton of the fractional nonlinear Schrodinger equation describing the polarization mode in optical fibers
    Houwe, Alphonse
    Abbagari, Souleymanou
    Djorwe, Philippe
    Saliou, Youssoufa
    Doka, Serge Y.
    Inc, Mustafa
    OPTICAL AND QUANTUM ELECTRONICS, 2022, 54 (08)
  • [4] The fractional nonlinear Schrodinger equation: Soliton turbulence, modulation instability, and extreme rogue waves
    Zhong, Ming
    Weng, Weifang
    Guo, Boling
    Yan, Zhenya
    CHAOS, 2025, 35 (01)
  • [5] Fractional nonlinear Schrodinger equation
    Mendez-Navarro, Jesus A.
    Naumkin, Pavel I.
    Sanchez-Suarez, Isahi
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2019, 70 (06):
  • [6] Brownian motion effects on W-shaped soliton and modulation instability gain of the (2+1)-dimensional nonlinear schrödinger equation
    Souleymanou Abbagari
    Pélérine Tsogni Nyawo
    Alphonse Houwe
    Mustafa Inc
    Optical and Quantum Electronics, 2022, 54
  • [7] SPACE-TIME FRACTIONAL NONLINEAR SCHRODINGER EQUATION
    Grande, Ricardo
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2019, 51 (05) : 4172 - 4212
  • [8] LARGE TIME ASYMPTOTICS FOR THE FRACTIONAL NONLINEAR SCHRODINGER EQUATION
    Hayashi, Nakao
    Naumkin, Pavel, I
    ADVANCES IN DIFFERENTIAL EQUATIONS, 2020, 25 (1-2) : 31 - 80
  • [9] Fractional optical solitons of the space-time fractional nonlinear Schrodinger equation
    Wu, Gang-Zhou
    Yu, Li-Jun
    Wang, Yue-Yue
    OPTIK, 2020, 207
  • [10] Fractional nonlinear Schrodinger equation of order α ∈ (0,1)
    Naumkin, Pavel I.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (07) : 5701 - 5729