Thermomechanical properties and thermal cycle resistance of plasma-sprayed mullite coating and mullite/zirconia composite coatings

被引:19
|
作者
Li, Shuangjian [1 ,2 ]
Zhao, Xiaoqin [1 ]
Hou, Guoliang [1 ]
Deng, Wen [1 ,2 ]
An, Yulong [1 ]
Zhou, Huidi [1 ]
Chen, Jianmin [1 ]
机构
[1] Chinese Acad Sci, Lanzhou Inst Chem Phys, State Key Lab Solid Lubricat, Lanzhou 730000, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
Mullite/ZrO2; Plasma spraying; Thermomechanical properties; Thermal cycle resistance; BARRIER COATINGS; CONDUCTIVITY; MICROSTRUCTURE;
D O I
10.1016/j.ceramint.2016.08.049
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Mullite coating and mullite/ZrO2 (10 and 20 vol%) composite coatings were fabricated by atmospheric plasma spraying technique and their thermomechanical properties and thermal cycle resistance were analyzed in detail. Results show that the as-sprayed coatings consist of crystalline and amorphous phases, but isothermal heating at 1000 degrees C can promote crystallization, thereby resulting in increased hardness and elastic modulus. The addition of ZrO2 in the coating composition changes the mullite crystallization behavior and increases the coefficient of thermal expansion (GE) for heat-treated coatings. Below 1000 degrees C, all the coatings show low thermal conductivity in the range of 0.9-1.7 W m(-1) K-1, whereas it sharply increases at higher temperature because of the crystallization and formation of cracks. Owing to the increase of the GE of the composite coatings, their thermal cycling performance improved significantly. (C) 2016 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
引用
收藏
页码:17447 / 17455
页数:9
相关论文
共 50 条
  • [21] Effect of Nano-Fly Ash Additive on the Mechanical and Microstructural Properties of Plasma-Sprayed Mullite Coatings
    Boonthai, Torsak
    Nunthavarawong, Peerawatt
    Sheppard, Panadda
    Koiprasert, Hathaipat
    Phupradit, Nuttacha
    Kerdwattha, Pravet
    JOURNAL OF THERMAL SPRAY TECHNOLOGY, 2024, 33 (08) : 2578 - 2592
  • [22] Bioconductivity and mechanical properties of plasma-sprayed dicalcium silicate/zirconia composite coating
    Xie, YT
    Liu, XY
    Ding, CX
    Chu, PK
    MATERIALS SCIENCE & ENGINEERING C-BIOMIMETIC AND SUPRAMOLECULAR SYSTEMS, 2005, 25 (04): : 509 - 515
  • [23] Processing and characterisation of plasma sprayed zirconia-alumina-mullite composite coating on a mild-steel substrate
    Das, S
    Ghosh, S
    Pandit, A
    Bandyopadhyay, TK
    Chattopadhyay, AB
    Das, K
    JOURNAL OF MATERIALS SCIENCE, 2005, 40 (18) : 5087 - 5089
  • [24] PHASE-COMPOSITION AND PROPERTIES OF PLASMA-SPRAYED ZIRCONIA THERMAL BARRIER COATINGS
    HARMSWORTH, PD
    STEVENS, R
    JOURNAL OF MATERIALS SCIENCE, 1992, 27 (03) : 611 - 615
  • [25] Investigation of CMAS resistance of sacrificial plasma-sprayed mullite-YSZ protective layer on 8YSZ thermal barrier coating
    Fang, Huanjie
    Wang, Weize
    Huang, Jibo
    Ye, Dongdong
    CORROSION SCIENCE, 2020, 173 (173)
  • [26] Corrosion resistance properties of reactive plasma-sprayed titanium composite coatings
    Valente, T
    Galliano, FP
    SURFACE & COATINGS TECHNOLOGY, 2000, 127 (01): : 86 - 92
  • [27] Creep behavior of plasma-sprayed zirconia thermal barrier coatings
    Soltani, Reza
    Coyle, Thomas W.
    Mostaghimi, Javad
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2007, 90 (09) : 2873 - 2878
  • [28] Monoclinic zirconia distributions in plasma-sprayed thermal barrier coatings
    Lance, MJ
    Haynes, JA
    Ferber, MK
    Cannon, WR
    JOURNAL OF THERMAL SPRAY TECHNOLOGY, 2000, 9 (01) : 68 - 72
  • [29] MICROSTRUCTURE OF ZIRCONIA YTTRIA PLASMA-SPRAYED THERMAL BARRIER COATINGS
    HARMSWORTH, PD
    STEVENS, R
    JOURNAL OF MATERIALS SCIENCE, 1992, 27 (03) : 616 - 624
  • [30] Structure Dependence of Thermal Conductivity of Plasma-Sprayed Zirconia Coatings
    Xu, Y.
    Guo, H. B.
    Murakami, H.
    Kuroda, S.
    Yamazaki, M.
    THERMAL CONDUCTIVITY 30:THERMAL EXPANSION 18, 2010, 30 : 393 - +