Classification of urban tree species using LiDAR data and WorldView-2 satellite imagery in a heterogeneous environment

被引:13
|
作者
Jombo, Simbarashe [1 ,2 ]
Adam, Elhadi [1 ]
Tesfamichael, Solomon [3 ]
机构
[1] Univ Witwatersrand, Sch Geog Archaeol & Environm Studies, Johannesburg, South Africa
[2] Univ Free State, Dept Geog, Bloemfontein, South Africa
[3] Univ Johannesburg, Dept Geog Environm Management & Energy Studies, Johannesburg, South Africa
关键词
Urban tree species; LiDAR; Normalized Digital Surface Model (nDSM); WorldView-2; Machine learning algorithms; OBJECT-BASED APPROACH; REMOTE-SENSING DATA; AIRBORNE LIDAR; FOREST; JOHANNESBURG; EXTRACTION; VEGETATION; ACCURACY; COVER;
D O I
10.1080/10106049.2022.2028904
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Feature complexity and heterogeneity of urban areas pose a challenge for tree species classification. This study examined the effectiveness of the integrated Worldview-2 (WV-2) bands, vegetation indices and normalized Digital Surface Model (nDSM) dataset in mapping common urban tree species and other land use and land cover (LULC) types using Random Forest (RF) and Support Vector Machine (SVM) algorithms. The study also ranked the importance of nDSM, WV-2 bands and vegetation indices. The results indicate that the integrated dataset was effective as shown by high classification accuracies of 97% for the RF and 94% for SVM classifiers. The nDSM was the top-ranked variable with high Mean Decrease in Accuracy (MDA) and Mean Decrease in Gini (MDG) scores of 0.98 and 0.61, respectively. This research provides information to municipalities on the methods and data that can be used for the sustainable management of urban tree species.
引用
收藏
页码:9943 / 9966
页数:24
相关论文
共 50 条
  • [31] Suitability of WorldView-2 data for tree species classification with special emphasis on the four new spectral bands
    Immitzer, Markus
    Atzberger, Clement
    Koukal, Tatjana
    [J]. PHOTOGRAMMETRIE FERNERKUNDUNG GEOINFORMATION, 2012, (05): : 573 - 588
  • [32] Comparison of Different Algorithms to Orthorectify WorldView-2 Satellite Imagery
    Belfiore, Oscar Rosario
    Parente, Claudio
    [J]. ALGORITHMS, 2016, 9 (04)
  • [33] Stress Detection in New Zealand Kauri Canopies with WorldView-2 Satellite and LiDAR Data
    Meiforth, Jane J.
    Buddenbaum, Henning
    Hill, Joachim
    Shepherd, James D.
    Dymond, John R.
    [J]. REMOTE SENSING, 2020, 12 (12)
  • [34] Urban Tree Species Classification Combining Spaceborne LiDAR and Multispectral Imagery
    Wang, Shufan
    Liu, Chun
    Wu, Hangbin
    Li, Weiyue
    [J]. Tongji Daxue Xuebao/Journal of Tongji University, 2024, 52 (06): : 970 - 981
  • [35] SATELLITE IMAGERY CLASSIFICATION WITH LIDAR DATA
    Alonso, M. C.
    Malpica, J. A.
    [J]. NETWORKING THE WORLD WITH REMOTE SENSING, 2010, 38 : 730 - 735
  • [36] BENTHIC HABITAT CLASSIFICATION OF SHALLOW WATER USING WORLDVIEW-2 IMAGERY WITH IN-SITU AND DRONE DATA
    Sugara, Ayub
    Siregar, Vincentius Paulus
    Agus, Syamsul Bahri
    [J]. JURNAL ILMU DAN TEKNOLOGI KELAUTAN TROPIS, 2020, 12 (01): : 135 - 150
  • [37] Mapping freshwater marsh species distributions using WorldView-2 high-resolution multispectral satellite imagery
    Carle, Melissa Vernon
    Wang, Lei
    Sasser, Charles E.
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2014, 35 (13) : 4698 - 4716
  • [38] MAPPING URBAN TREE CANOPY COVER USING FUSED AIRBORNE LIDAR AND SATELLITE IMAGERY DATA
    Parmehr, Ebadat G.
    Amati, Marco
    Fraser, Clive S.
    [J]. XXIII ISPRS CONGRESS, COMMISSION VII, 2016, 3 (07): : 181 - 186
  • [39] Multi-phenology WorldView-2 imagery improves remote sensing of savannah tree species
    Madonsela, Sabelo
    Cho, Moses Azong
    Mathieu, Renaud
    Mutanga, Onisimo
    Ramoelo, Abel
    Kaszta, Zaneta
    Van de Kerchove, Ruben
    Wolff, Eleonore
    [J]. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2017, 58 : 65 - 73
  • [40] Mangrove species classification with combination of WorldView-2 and Zhuhai-1 satellite images
    Gao, Changjun
    Jiang, Xiapeng
    Zhen, Jianing
    Wang, Junjie
    Wu, Guofeng
    [J]. National Remote Sensing Bulletin, 2022, 26 (06) : 1155 - 1168