Computationally Efficient Mean-Shift Parallel Segmentation Algorithm for High-Resolution Remote Sensing Images

被引:4
|
作者
Wu, Tianjun [1 ,2 ,5 ]
Xia, Liegang [3 ]
Luo, Jiancheng [4 ]
Zhou, Xiaocheng [2 ]
Hu, Xiaodong [4 ]
Ma, Jianghong [1 ]
Song, Xueli [1 ]
机构
[1] Changan Univ, Dept Math & Informat Sci, Coll Sci, Xian 710064, Shaanxi, Peoples R China
[2] Fuzhou Univ, Key Lab Spatial Data Min & Informat Sharing, Minist Educ, Fuzhou 350002, Fujian, Peoples R China
[3] Zhejiang Univ Technol, Coll Comp Sci & Technol, Hangzhou 310023, Zhejiang, Peoples R China
[4] Chinese Acad Sci, Inst Remote Sensing & Digital Earth, State Key Lab Remote Sensing Sci, Beijing 100101, Peoples R China
[5] State Key Lab Geoinformat Engn, Xian 710054, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
High-resolution remote sensing images; Image segmentation; Mean-shift; Parallel computation; Data-partitioning; CLASSIFICATION;
D O I
10.1007/s12524-018-0841-8
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In high-resolution remote sensing image processing, segmentation is a crucial step that extracts information within the object-based image analysis framework. Because of its robustness, mean-shift segmentation algorithms are widely used in the field of image segmentation. However, the traditional implementation of these methods cannot process large volumes of images rapidly under limited computing resources. Currently, parallel computing models are generally employed for segmentation tasks with massive remote sensing images. This paper presents a parallel implementation of the mean-shift segmentation algorithm based on an analysis of the principle and characteristics of this technique. To avoid the inconsistency on the boundaries of adjacent data chunks, we propose a novel buffer-zone-based data-partitioning strategy. Employing the proposed data-partitioning strategy, two intensively computation steps are performed in parallel on different data chunks. The experimental results show that the proposed algorithm effectively improves the computing efficiency of image segmentation in a parallel computing environment. Furthermore, they demonstrate the practicality of massive image segmentation when computer resources are limited.
引用
收藏
页码:1805 / 1814
页数:10
相关论文
共 50 条
  • [21] Mean-shift based object detection and clustering from high resolution remote sensing imagery
    SushmaLeela, T.
    chandrakanth, R.
    Saibaba, J.
    Varadan, Geeta
    Mohan, Sambhu S.
    2013 FOURTH NATIONAL CONFERENCE ON COMPUTER VISION, PATTERN RECOGNITION, IMAGE PROCESSING AND GRAPHICS (NCVPRIPG), 2013,
  • [22] Fast mean-shift algorithm for image segmentation
    School of Mechanical Electronic and Information Engineering, China University of Mining and Technology, Beijing, China
    J. Comput. Inf. Syst., 20 (8731-8739):
  • [23] Hierarchical Fast Mean-Shift Segmentation in Depth Images
    Surkala, Milan
    Fusek, Radovan
    Holusa, Michael
    Sojka, Eduard
    ADVANCED CONCEPTS FOR INTELLIGENT VISION SYSTEMS, ACIVS 2016, 2016, 10016 : 441 - 452
  • [24] UNetMamba: An Efficient UNet-Like Mamba for Semantic Segmentation of High-Resolution Remote Sensing Images
    Zhu, Enze
    Chen, Zhan
    Wang, Dingkai
    Shi, Hanru
    Liu, Xiaoxuan
    Wang, Lei
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2025, 22
  • [25] Pyramidal Watershed Segmentation Algorithm for High-Resolution Remote Sensing Images Using Discrete Wavelet Transforms
    Parvathi, K.
    Rao, B. S. Prakasa
    Das, M. Mariya
    Rao, T. V.
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2009, 2009
  • [26] An improved semantic segmentation algorithm for high-resolution remote sensing images based on DeepLabv3+
    Wang, Yan
    Yang, Ling
    Liu, Xinzhan
    Yan, Pengfei
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [27] High-precision Registration Algorithm and Parallel Design Method for High-Resolution Optical Remote Sensing Images
    Zhang, Xunying
    Zhao, Xiaodong
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2021, 35 (07)
  • [28] Dynamic High-Resolution Network for Semantic Segmentation in Remote-Sensing Images
    Guo, Shichen
    Yang, Qi
    Xiang, Shiming
    Wang, Pengfei
    Wang, Xuezhi
    REMOTE SENSING, 2023, 15 (09)
  • [29] Hybrid region merging method for segmentation of high-resolution remote sensing images
    Zhang, Xueliang
    Xiao, Pengfeng
    Feng, Xuezhi
    Wang, Jiangeng
    Wang, Zuo
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2014, 98 : 19 - 28
  • [30] Dual decoupling semantic segmentation model for high-resolution remote sensing images
    Liu S.
    Li X.
    Yu M.
    Xing G.
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2023, 52 (04): : 638 - 647