Pediatric Seizure Prediction in Scalp EEG Using a Multi-Scale Neural Network With Dilated Convolutions

被引:38
|
作者
Gao, Yikai [1 ]
Chen, Xun [2 ,3 ]
Liu, Aiping [1 ,3 ]
Liang, Deng [1 ]
Wu, Le [1 ]
Qian, Ruobing [2 ]
Xie, Hongtao [1 ]
Zhang, Yongdong [1 ]
机构
[1] Univ Sci & Technol China USTC, Sch Informat Sci & Technol, Hefei 230027, Peoples R China
[2] Univ Sci & Technol China, Affliated Hosp USTC 1, Div Life Sci & Med, Dept Neurosurg,Epilepsy Ctr, Hefei 230001, Anhui, Peoples R China
[3] Univ Sci & Technol China, Inst Adv Technol, USTC IAT Huami Joint Lab Brain Machine Intelligen, Hefei 230088, Peoples R China
关键词
Electroencephalography; Convolution; Feature extraction; Brain modeling; Kernel; Scalp; Epilepsy; Dilated convolution; multi-scale; patient-specific; scalp electroencephalogram (EEG); seizure prediction; EPILEPTIC SEIZURES;
D O I
10.1109/JTEHM.2022.3144037
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Objective: Epileptic seizure prediction based on scalp electroencephalogram (EEG) is of great significance for improving the quality of life of patients with epilepsy. In recent years, a number of studies based on deep learning methods have been proposed to address this issue and achieve excellent performance. However, most studies on epileptic seizure prediction by EEG fail to take full advantage of temporal-spatial multi-scale features of EEG signals, while EEG signals carry information in multiple temporal and spatial scales. To this end, in this study, we proposed an end-to-end framework by using a temporal-spatial multi-scale convolutional neural network with dilated convolutions for patient-specific seizure prediction. Methods: Specifically, the model divides the EEG processing pipeline into two stages: the temporal multi-scale stage and the spatial multi-scale stage. In each stage, we firstly extract the multi-scale features along the corresponding dimension. A dilated convolution block is then conducted on these features to expand our model's receptive fields further and systematically aggregate global information. Furthermore, we adopt a feature-weighted fusion strategy based on an attention mechanism to achieve better feature fusion and eliminate redundancy in the dilated convolution block. Results: The proposed model obtains an average sensitivity of 93.3%, an average false prediction rate of 0.007 per hour, and an average proportion of time-in-warning of 6.3% testing in 16 patients from the CHB-MIT dataset with the leave-one-out method. Conclusion: Our model achieves superior performance in comparison to state-of-the-art methods, providing a promising solution for EEG-based seizure prediction.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] A Novel Multi-Scale Graph Neural Network for Metabolic Pathway Prediction
    Liu, Yuerui
    Jiang, Yongquan
    Zhang, Fan
    Yang, Yan
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2024, 21 (01) : 178 - 187
  • [32] MSSTNet: A Multi-Scale Spatiotemporal Prediction Neural Network for Precipitation Nowcasting
    Ye, Yuankang
    Gao, Feng
    Cheng, Wei
    Liu, Chang
    Zhang, Shaoqing
    REMOTE SENSING, 2023, 15 (01)
  • [33] A Novel Multi-scale Spatiotemporal Graph Neural Network for Epidemic Prediction
    Xu, Zenghui
    Li, Mingzhang
    Yu, Ting
    Hou, Linlin
    Zhang, Peng
    Kiran, Rage Uday
    Li, Zhao
    Zhang, Ji
    DATABASE AND EXPERT SYSTEMS APPLICATIONS, PT II, DEXA 2024, 2024, 14911 : 272 - 287
  • [34] Dynamic Functional Connectivity Neural Network for Epileptic Seizure Prediction Using Multi-Channel EEG Signal
    Xu, Tao
    Wu, Yajing
    Tang, Yongqiang
    Zhang, Wensheng
    Cui, Zhihua
    IEEE SIGNAL PROCESSING LETTERS, 2024, 31 : 1499 - 1503
  • [35] Efficient graph convolutional networks for seizure prediction using scalp EEG
    Jia, Manhua
    Liu, Wenjian
    Duan, Junwei
    Chen, Long
    Chen, C. L. Philip
    Wang, Qun
    Zhou, Zhiguo
    FRONTIERS IN NEUROSCIENCE, 2022, 16
  • [36] Epileptic Seizure Prediction Using CSP and LDA for Scalp EEG Signals
    Alotaiby, Turky N.
    Alshebeili, Saleh A.
    Alotaibi, Faisal M.
    Alrshoud, Saud R.
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2017, 2017
  • [37] Multi-Scale Dilated Convolutional Neural Network Based Multi-Focus Image Fusion Algorithm
    Yin Haitao
    Zhou Wei
    LASER & OPTOELECTRONICS PROGRESS, 2023, 60 (02)
  • [38] Knee osteoarthritis severity prediction using an attentive multi-scale deep convolutional neural network
    Jain, Rohit Kumar
    Sharma, Prasen Kumar
    Gaj, Sibaji
    Sur, Arijit
    Ghosh, Palash
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (03) : 6925 - 6942
  • [39] Multi-scale high-speed network traffic prediction using combination of neural networks
    Khotanzad, A
    Sadek, N
    PROCEEDINGS OF THE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS 2003, VOLS 1-4, 2003, : 1071 - 1075
  • [40] Knee osteoarthritis severity prediction using an attentive multi-scale deep convolutional neural network
    Rohit Kumar Jain
    Prasen Kumar Sharma
    Sibaji Gaj
    Arijit Sur
    Palash Ghosh
    Multimedia Tools and Applications, 2024, 83 : 6925 - 6942