Modified Proca theory in arbitrary and two dimensions

被引:4
|
作者
Rao, A. K. [1 ]
Malik, R. P. [1 ,2 ]
机构
[1] Banaras Hindu Univ, Ctr Adv Studies, Inst Sci, Phys Dept, Varanasi 221005, Uttar Pradesh, India
[2] Banaras Hindu Univ, DST Ctr Interdisciplinary Math Sci, Inst Sci, Varanasi 221005, Uttar Pradesh, India
关键词
GAUGE; MODEL;
D O I
10.1209/0295-5075/ac25a8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We demonstrate that the standard Stuckelberg-modified Proca theory (i.e., a massive Abelian 1-form theory) respects the classical gauge and corresponding quantum (anti-)BRST symmetry transformations in any arbitrary dimension of spacetime within the framework of Becchi-Rouet-Stora-Tyutin (BRST) formalism. We further show that the Stuckelberg formalism gets modified in the two (1+1)-dimensions of spacetime due to a couple of discrete duality symmetry transformations in the theory which turn out to be responsible for the existence of the nilpotent (anti-)co-BRST symmetry transformations corresponding to the nilpotent (anti-)BRST symmetry transformations of our theory. These nilpotent symmetries exist together in the modified version of the two (1+1)-dimensional (2D) Proca theory. We provide the mathematical basis for the modification of the Stuckelberg technique, the existence of the discrete duality as well as the continuous (anti-)co-BRST symmetry transformations in the 2D modified version of Proca theory. Copyright (C) 2021 EPLA
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Asymptotic symmetries of Maxwell theory in arbitrary dimensions at spatial infinity
    Erfan Esmaeili
    Journal of High Energy Physics, 2019
  • [22] Periodic charge oscillations in the Proca theory
    Damski, Bogdan
    NUCLEAR PHYSICS B, 2023, 994
  • [23] Complete theory of Maxwell and Proca fields
    Diez, Veronica Errasti
    Gording, Brage
    Mendez-Zavaleta, Julio A.
    Schmidt-May, Angnis
    PHYSICAL REVIEW D, 2020, 101 (04)
  • [24] GRBoondi: A code for evolving Generalized Proca theories on arbitrary backgrounds
    Institute for Theoretical Physics, Universität Heidelberg, Philosophenweg 16, Heidelberg
    69120, Germany
    arXiv,
  • [25] Proca theory from the spinning worldline
    Matthias Carosi
    Ivo Sachs
    Journal of High Energy Physics, 2022
  • [26] NOTE ON THE MODIFIED ANOMALY EQUATION OF NIELSEN AND SCHROER IN ARBITRARY EVEN DIMENSIONS
    MORITA, K
    PROGRESS OF THEORETICAL PHYSICS, 1989, 82 (01): : 40 - 45
  • [27] Generalized SU(2) Proca theory
    Allys, Erwan
    Peter, Patrick
    Rodriguez, Yeinzon
    PHYSICAL REVIEW D, 2016, 94 (08)
  • [28] Quantum stability of a new Proca theory
    de Rham, Claudia
    Heisenberg, Lavinia
    Kumar, Ankip
    Zosso, Jann
    PHYSICAL REVIEW D, 2022, 105 (02)
  • [29] Proca theory from the spinning worldline
    Carosi, Matthias
    Sachs, Ivo
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (01)
  • [30] Black holes in the generalized Proca theory
    Masato Minamitsuji
    General Relativity and Gravitation, 2017, 49