Modified Proca theory in arbitrary and two dimensions

被引:4
|
作者
Rao, A. K. [1 ]
Malik, R. P. [1 ,2 ]
机构
[1] Banaras Hindu Univ, Ctr Adv Studies, Inst Sci, Phys Dept, Varanasi 221005, Uttar Pradesh, India
[2] Banaras Hindu Univ, DST Ctr Interdisciplinary Math Sci, Inst Sci, Varanasi 221005, Uttar Pradesh, India
关键词
GAUGE; MODEL;
D O I
10.1209/0295-5075/ac25a8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We demonstrate that the standard Stuckelberg-modified Proca theory (i.e., a massive Abelian 1-form theory) respects the classical gauge and corresponding quantum (anti-)BRST symmetry transformations in any arbitrary dimension of spacetime within the framework of Becchi-Rouet-Stora-Tyutin (BRST) formalism. We further show that the Stuckelberg formalism gets modified in the two (1+1)-dimensions of spacetime due to a couple of discrete duality symmetry transformations in the theory which turn out to be responsible for the existence of the nilpotent (anti-)co-BRST symmetry transformations corresponding to the nilpotent (anti-)BRST symmetry transformations of our theory. These nilpotent symmetries exist together in the modified version of the two (1+1)-dimensional (2D) Proca theory. We provide the mathematical basis for the modification of the Stuckelberg technique, the existence of the discrete duality as well as the continuous (anti-)co-BRST symmetry transformations in the 2D modified version of Proca theory. Copyright (C) 2021 EPLA
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Novel symmetries in the modified version of two dimensional Proca theory
    T. Bhanja
    D. Shukla
    R. P. Malik
    The European Physical Journal C, 2013, 73
  • [2] Novel symmetries in the modified version of two dimensional Proca theory
    Bhanja, T.
    Shukla, D.
    Malik, R. P.
    EUROPEAN PHYSICAL JOURNAL C, 2013, 73 (08): : 1 - 13
  • [3] Modified Brans-Dicke theory in arbitrary dimensions
    Rasouli, S. M. M.
    Farhoudi, Mehrdad
    Moniz, Paulo Vargas
    CLASSICAL AND QUANTUM GRAVITY, 2014, 31 (11)
  • [4] N = (2.0) non-Abelian Proca-Stuckelberg theory in six dimensions
    Nishino, Hitoshi
    Rajpoot, Subhash
    PHYSICAL REVIEW D, 2020, 101 (10)
  • [5] Conformal blocks for arbitrary spins in two dimensions
    Osborn, H.
    PHYSICS LETTERS B, 2012, 718 (01) : 169 - 172
  • [6] Ray Tracing in an Arbitrary Cloak in Two Dimensions
    Sidhwa, H. H.
    Aiyar, R. P.
    Kulkarni, S. V.
    PIERS 2013 STOCKHOLM: PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM, 2013, : 1792 - 1795
  • [7] On the incidence of two linear spaces of arbitrary dimensions
    Schubert, H
    MATHEMATISCHE ANNALEN, 1903, 57 : 209 - 221
  • [8] Hawking radiation for a Proca field in D dimensions
    Herdeiro, Carlos
    Sampaio, Marco O. P.
    Wang, Mengjie
    PHYSICAL REVIEW D, 2012, 85 (02):
  • [9] Compact dimensions and the Casimir effect: the Proca connection
    Edery, Ariel
    Marachevsky, Valery N.
    JOURNAL OF HIGH ENERGY PHYSICS, 2008, (12):
  • [10] Circuit complexity in Proca theory
    Meng, Kun
    Deng, Meihua
    Yang, Yang
    Cao, Lianzhen
    Zhao, Jiaqiang
    PHYSICAL REVIEW D, 2021, 104 (10)