Composites fatigue delamination prediction using double load envelopes and twin cohesive models

被引:20
|
作者
Zhang, Bing [1 ]
Kawashita, Luiz F. [1 ]
Hallett, Stephen R. [1 ]
机构
[1] Univ Bristol, Bristol Composites Inst ACCIS, Queens Bldg, Bristol BS8 1TR, Avon, England
关键词
Delamination; Fatigue; Cohesive interface modelling; Finite element analysis (FEA); HIGH-CYCLE FATIGUE; DRIVEN DELAMINATION; SIMULATION METHOD; ZONE; GROWTH; PROPAGATION; INITIATION; STRESS; LAW;
D O I
10.1016/j.compositesa.2019.105711
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper presents an explicit finite element methodology for predicting fatigue delamination in composite laminates using twin cohesive models and a combined static & fatigue cohesive formulation; one model is loaded under the peak-load envelope, whilst the other model is loaded under the trough-load envelope. The twin models contain pairs of twin cohesive interface elements that predict delamination growth by exchanging data at every time increment. The cohesive formulation evaluates fracture mechanics parameters, e.g. the local minimum to maximum fracture energy ratio via local information associated with the twin cohesive elements, without the need to know the global loading information, e.g. the global R ratio. The method allows predicting the mechanical condition of a laminate at both the peak and trough loads. This method is validated by multiple test cases with varying mode mixities and R ratios, showing a high computation efficiency.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] From S-N to the Paris law with a new mixed-mode cohesive fatigue model for delamination in composites
    Davila, C. G.
    THEORETICAL AND APPLIED FRACTURE MECHANICS, 2020, 106
  • [22] PREDICTION OF IMPACT INDUCED DELAMINATION IN COMPOSITE PLATES USING COHESIVE ELEMENTS: A COMPARISON OF 3D SOLID AND SHELL FE MODELS
    Aymerich, F.
    Cerioni, A.
    Feng, D.
    COMPOSITE MATERIALS FOR STRUCTURAL PERFORMANCE: TOWARDS HIGHER LIMITS, 2011, : 213 - 220
  • [23] SELF-HEALING OF FATIGUE DELAMINATION IN THERMOSET COMPOSITES USING THERMOPLASTIC HEALANTS
    Vishe, Nilesh J.
    Mulani, Sameer B.
    Roy, Samit
    PROCEEDINGS OF ASME 2023 AEROSPACE STRUCTURES, STRUCTURAL DYNAMICS, AND MATERIALS CONFERENCE, SSDM2023, 2023,
  • [24] DELAMINATION PREDICTION IN DRILLING OF CFRP COMPOSITES USING A RTIFICIAL NEURAL NETWORK
    Krishnamoorthy, A.
    Boopathy, S. Rajendara
    Palanikumar, K.
    JOURNAL OF ENGINEERING SCIENCE AND TECHNOLOGY, 2011, 6 (02) : 191 - 203
  • [25] A simulation method for high-cycle fatigue-driven delamination using a cohesive zone model
    Bak, Brian L. V.
    Turon, Albert
    Lindgaard, Esben
    Lund, Erik
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2016, 106 (03) : 163 - 191
  • [26] Stochastic modeling of delamination growth in unidirectional composite DCB specimens using cohesive zone models
    Shanmugam, Venkateswaran
    Penmetsa, Ravi
    Tuegel, Eric
    Clay, Stephen
    COMPOSITE STRUCTURES, 2013, 102 : 38 - 60
  • [27] A benchmark study of simulation methods for high-cycle fatigue-driven delamination based on cohesive zone models
    Bak, B. L. V.
    Turon, A.
    Lindgaard, E.
    Lund, E.
    COMPOSITE STRUCTURES, 2017, 164 : 198 - 206
  • [28] Accurate coarse mesh simulation of delamination in composites using a novel hp-adaptive cohesive element
    Mukhopadhyay, Supratik
    Bhatia, Sumeet
    JOURNAL OF COMPOSITE MATERIALS, 2023, 57 (13) : 2201 - 2218
  • [29] Finite element analysis of mode II delamination suppression in stitched composites using cohesive zone model
    Herwan, J.
    Kondo, A.
    Morooka, S.
    Watanabe, N.
    PLASTICS RUBBER AND COMPOSITES, 2015, 44 (09) : 390 - 396
  • [30] Prediction of fatigue crack growth retardation using a cyclic cohesive zone model
    Huan Li
    Chun Li
    Huang Yuan
    Archive of Applied Mechanics, 2017, 87 : 1061 - 1075