Hamilton-Jacobi Homogenization and the Isospectral Problem

被引:0
|
作者
Zanelli, Lorenzo [1 ]
机构
[1] Tullio Levi Civita Univ Padova, Dept Math, I-35121 Padua, Italy
来源
SYMMETRY-BASEL | 2021年 / 13卷 / 07期
关键词
homogenization theory; Schrodinger operators; isospectral problem; VISCOSITY SOLUTIONS; DYNAMICS; ANALOG;
D O I
10.3390/sym13071196
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We consider the homogenization theory for Hamilton-Jacobi equations on the one-dimensional flat torus in connection to the isospectrality problem of Schrodinger operators. In particular, we link the equivalence of effective Hamiltonians provided by the weak KAM theory with the class of the corresponding operators exhibiting the same spectrum.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Homogenization of pathwise Hamilton-Jacobi equations
    Seeger, Benjamin
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2018, 110 : 1 - 31
  • [2] Homogenization for stochastic Hamilton-Jacobi equations
    Rezakhanlou, F
    Tarver, JE
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2000, 151 (04) : 277 - 309
  • [3] HOMOGENIZATION OF METRIC HAMILTON-JACOBI EQUATIONS
    Oberman, Adam M.
    Takei, Ryo
    Vladimirsky, Alexander
    MULTISCALE MODELING & SIMULATION, 2009, 8 (01): : 269 - 295
  • [4] Homogenization for¶Stochastic Hamilton-Jacobi Equations
    Fraydoun Rezakhanlou
    James E. Tarver
    Archive for Rational Mechanics and Analysis, 2000, 151 : 277 - 309
  • [5] STOCHASTIC HOMOGENIZATION OF HAMILTON-JACOBI AND "VISCOUS"-HAMILTON-JACOBI EQUATIONS WITH CONVEX NONLINEARITIES - REVISITED
    Lions, Pierre-Louis
    Souganidis, Panagiotis E.
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2010, 8 (02) : 627 - 637
  • [6] SLOW PERIODIC HOMOGENIZATION FOR HAMILTON-JACOBI EQUATIONS
    Cooperman, William
    arXiv, 2023,
  • [7] Stochastic Homogenization of Hamilton-Jacobi Equations on a Junction
    Fayad, Rim
    Forcadel, Nicolas
    Ibrahim, Hassan
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2022, 243 (03) : 1223 - 1267
  • [8] Homogenization of Hamilton-Jacobi equations: Numerical methods
    Achdou, Yves
    Camilli, Fabio
    Dolcetta, Italo Capuzzo
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2008, 18 (07): : 1115 - 1143
  • [9] Stochastic homogenization of a nonconvex Hamilton-Jacobi equation
    Armstrong, Scott N.
    Tran, Hung V.
    Yu, Yifeng
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 54 (02) : 1507 - 1524
  • [10] On the rate of convergence in homogenization of Hamilton-Jacobi equations
    Capuzzo-Dolcetta, I
    Ishii, H
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2001, 50 (03) : 1113 - 1129