共 50 条
Solution mapping of T cell receptor docking footprints on peptide-MHC
被引:38
|作者:
Varani, Luca
Bankovich, Alexander J.
Liu, Corey W.
Colf, Leremy A.
Jones, Lindsay L.
Kranz, David M.
Puglisi, Joseph D.
Garcia, K. Christopher
机构:
[1] Stanford Univ, Howard Hughes Med Inst, Sch Med, Stanford, CA 94305 USA
[2] Univ Illinois, Dept Biochem, Urbana, IL 61801 USA
[3] Stanford Univ, Sch Med, Stanford Magnet Resonance Lab, Stanford, CA 94305 USA
[4] Stanford Univ, Sch Med, Dept Biol Struct, Stanford, CA 94305 USA
[5] Stanford Univ, Sch Med, Dept Mol & Cellular Physiol, Stanford, CA 94305 USA
来源:
关键词:
chemical shift mapping;
dynamics;
NMR;
cellular immunity;
protein-protein interaction;
D O I:
10.1073/pnas.0703702104
中图分类号:
O [数理科学和化学];
P [天文学、地球科学];
Q [生物科学];
N [自然科学总论];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
T cell receptor (TCR) recognition of peptide-MHC (pMHC) is central to the cellular immune response. A large database of TCR-pMHC structures is needed to reveal general structural principles, such as whether the repertoire of TCR/MHC docking modes is dictated by a "recognition code" between conserved elements of the TCR and MHC genes. Although approximate to 17 cocrystal structures of unique TCR-pMHC complexes have been determined, cocrystallization of soluble TCR and pMHC remains a major technical obstacle in the field. Here we demonstrate a strategy, based on NMR chemical shift mapping, that permits rapid and reliable analysis of the solution footprint made by a TCR when binding onto the pMHC surface. We mapped the 2C TCR binding interaction with its allogeneic ligand H-2L(d)-QL9 and identified a group of NMR-shifted residues that delineated a clear surface of the MHC that we defined as the TCR footprint. We subsequently found that the docking footprint described by NMR shifts was highly accurate compared with a recently determined high-resolution crystal structure of the same complex. The same NMR footprint analysis was done on a high-affinity mutant of the TCR. The current work serves as a foundation to explore the molecular dynamics of pMHC complexes and to rapidly determine the footprints of many L-d-Specific TCRs.
引用
收藏
页码:13080 / 13085
页数:6
相关论文