4CF-Net: New 3D convolutional neural network for spectral spatial classification of hyperspectral remote sensing images

被引:9
|
作者
Huseyin, Firat [1 ]
Hanbay, Davut [2 ]
机构
[1] Dicle Univ, Vocat Sch Tech Sci, TR-21200 Diyarbakir, Turkey
[2] Inonu Univ, Dept Comp Engn, TR-44280 Malatya, Turkey
关键词
Hyperspectral image classification; deep learning; 3D convolutional neural network; remote sensing;
D O I
10.17341/gazimmfd.901291
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Hyperspectral images (HSI) are contiguous band images commonly used in remote sensing. Deep learning (DL) is an effective method used in HSI classification. Convolutional neural networks (CNN) are one of the DL methods used in HSI classification. It provides automated approaches that can learn abstract features of HSIs from spectral-spatial fields. The high dimensionality of the HSIs increases the computational complexity. Therefore, most of the developed CNN models perform dimensionality reduction as a preprocessing step. Another problem in HSI classification is that spectral-spatial features must be considered in order to obtain accurate results. Because, HSI classification performance is highly dependent on spectral spatial information. In this study, a new 3D CNN model is proposed for HSI classification. The proposed method provides an effective method to simultaneously extract spectral-spatial features in HSIs. The network uses the 3D hyperspectral cube at the input. Principal component analysis is used to eliminate the dimensional redundancy in the hyperspectral cube. Then, using neighborhood extraction, spectral-spatial features are extracted effectively. The proposed method has been tested with 4 datasets. The application results were compared with 7 different DL-based methods and it was seen that our 4CF-Net method showed better classification performance.
引用
收藏
页码:439 / 453
页数:15
相关论文
共 50 条
  • [21] 3D Convolutional Neural Networks for Crop Classification with Multi-Temporal Remote Sensing Images
    Ji, Shunping
    Zhang, Chi
    Xu, Anjian
    Shi, Yun
    Duan, Yulin
    REMOTE SENSING, 2018, 10 (01)
  • [22] An Improved Spectral-Spatial Classification Framework for Hyperspectral Remote Sensing Images
    Chen, Zhao
    Wang, Bin
    2014 INTERNATIONAL CONFERENCE ON AUDIO, LANGUAGE AND IMAGE PROCESSING (ICALIP), VOLS 1-2, 2014, : 532 - 536
  • [23] Classification of Optical Remote Sensing Images Based on Convolutional Neural Network
    Li, Yibo
    Liu, Mingjun
    Zhang, Senyue
    2019 6TH INTERNATIONAL CONFERENCE ON CONTROL, DECISION AND INFORMATION TECHNOLOGIES (CODIT 2019), 2019, : 801 - 806
  • [24] Convolutional Neural Network with Expert Knowledge for Hyperspectral Remote Sensing Imagery Classification
    Wu, Chunming
    Wang, Meng
    Gao, Lang
    Song, Weijing
    Tian, Tian
    Choo, Kim-Kwang Raymond
    KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2019, 13 (08): : 3917 - 3941
  • [25] SPECTRAL-SPATIAL CLASSIFICATION OF HYPERSPECTRAL DATA USING 3D-2D CONVOLUTIONAL NEURAL NETWORK AND INCEPTION NETWORK
    Nyabuga, Douglas Omwenga
    Li, Guohua
    IADIS-INTERNATIONAL JOURNAL ON COMPUTER SCIENCE AND INFORMATION SYSTEMS, 2021, 16 (02): : 29 - 44
  • [26] Spectral-Spatial Classification of Hyperspectral Image Based on Self-Adaptive Deep Residual 3D Convolutional Neural Network
    Xiao Z.
    Jiang J.
    Ni C.
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2019, 31 (11): : 2017 - 2029
  • [27] Deep fusion of hyperspectral images and multi-source remote sensing data for classification with convolutional neural network
    Zhao W.
    Li S.
    Li A.
    Zhang B.
    Chen J.
    Li, Shanshan (lishanshan@aircas.ac.cn), 1600, (25): : 1489 - 1502
  • [28] SPATIAL-SPECTRAL COMBINATION CONVOLUTIONAL NEURAL NETWORK FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Pu, Chunyu
    Huang, Hong
    Li, Zhengying
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 2037 - 2040
  • [29] Spectral-spatial classification of hyperspectral images using deep convolutional neural networks
    Yue, Jun
    Zhao, Wenzhi
    Mao, Shanjun
    Liu, Hui
    REMOTE SENSING LETTERS, 2015, 6 (06) : 468 - 477
  • [30] Edge protection filtering and convolutional neural network for hyperspectral remote sensing image classification
    Lv, Huanhuan
    Wang, Zhuolu
    Zhang, Hui
    INFRARED PHYSICS & TECHNOLOGY, 2022, 122