Is the cosmic no hair conjecture true in the Einstein-Maxwell-Dilaton system?

被引:1
|
作者
Maeda, K [1 ]
Narita, M
Suzuki, S
Torii, T
机构
[1] Waseda Univ, Dept Phys, Shinjuku Ku, Tokyo 1698585, Japan
[2] Rikkyo Univ, Dept Phys, Toshima Ku, Tokyo 1718501, Japan
[3] Tokyo Inst Technol, Dept Phys, Meguro Ku, Tokyo 1520033, Japan
[4] Univ Tokyo, Res ctr Early Universe, Bunkyo Ku, Tokyo 1130033, Japan
[5] Waseda Univ, Adv Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1698585, Japan
来源
基金
日本学术振兴会;
关键词
D O I
10.1142/S0217751X01003093
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
We investigate the gravitational collapsing phenomenon in the spherically symmetric Einstein-Maxwell-dilaton system with a positive cosmological constant. As a preparation, we first study some general properties of the horizons in asymptotically de Sitter spacetime and prove that the area of the: horizons does not decrease and has an upper bound if the matter fields satisfy the dominant energy condition. By using these results, we analytically show that once gravitational collapse occurs from any initial data on a null hypersurface, the system of field equations breaks down inevitably in the domain of outer communications or the boundary, i.e. the black hole event horizon provided that a future null infinity I+ exists, or the asymptotic structure at I+ is broken and the universe will recollapse. In order to clarify which history does the universe trace, we perform a numerical simulation. Then, the dilaton field diverges faster than the logarithmic function almost uniformly and the asymptotic structure would be broken. This implies that the cosmic no hair conjecture is violated in the generalized theory of gravity.
引用
收藏
页码:1501 / 1530
页数:30
相关论文
共 50 条
  • [21] Quantum criticality in Einstein-Maxwell-dilaton gravity
    Wen, Wen-Yu
    [J]. PHYSICS LETTERS B, 2012, 707 (3-4) : 398 - 403
  • [22] A hQCD model and its phase diagram in Einstein-Maxwell-Dilaton system
    Rong-Gen Cai
    Song He
    Danning Li
    [J]. Journal of High Energy Physics, 2012
  • [23] EINSTEIN-MAXWELL-DILATON BLACK BRANES WITH ARBITRARY TENSION AND DILATON CHARGE
    Shin, Ikjae
    Yun, Sangheon
    [J]. MODERN PHYSICS LETTERS A, 2009, 24 (10) : 713 - 720
  • [24] A five-dimensional cosmic branes solution in Einstein-Maxwell-dilaton gravity model
    Jun, Y
    Tao, BY
    [J]. ACTA PHYSICA SINICA, 2004, 53 (09) : 2843 - 2845
  • [25] Rotating black holes in Einstein-Maxwell-dilaton gravity
    Sheykhi, Ahmad
    [J]. PHYSICAL REVIEW D, 2008, 77 (10):
  • [26] A hQCD model and its phase diagram in Einstein-Maxwell-Dilaton system
    Cai, Rong-Gen
    He, Song
    Li, Danning
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2012, (03):
  • [27] General BPS solution in Einstein-Maxwell-Dilaton theory
    Park, DH
    [J]. JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 1997, 31 (06) : 894 - 897
  • [28] Minimal surfaces and generalized Einstein-Maxwell-dilaton theory
    Butler, M.
    Ghezelbash, A. M.
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2019, 34 (12):
  • [29] Phantom black holes in Einstein-Maxwell-dilaton theory
    Clement, Gerard
    Fabris, Julio C.
    Rodrigues, Manuel E.
    [J]. PHYSICAL REVIEW D, 2009, 79 (06):
  • [30] Black hole dynamics in Einstein-Maxwell-dilaton theory
    Hirschmann, Eric W.
    Lehner, Luis
    Liebling, Steven L.
    Palenzuela, Carlos
    [J]. PHYSICAL REVIEW D, 2018, 97 (06)