Interpolation of vector fields from human cardiac DT-MRI

被引:7
|
作者
Yang, F. [1 ]
Zhu, Y. M. [1 ]
Rapacchi, S. [1 ]
Luo, J. H. [2 ]
Robini, M. [1 ]
Croisille, P. [1 ]
机构
[1] Univ Lyon 1, INSA Lyon, CREATIS, INSERM,U630,CNRS,UMR 5220, F-69622 Villeurbanne, France
[2] Shanghai Jiao Tong Univ, Coll Life Sci & Technol, Shanghai 200240, Peoples R China
来源
PHYSICS IN MEDICINE AND BIOLOGY | 2011年 / 56卷 / 05期
关键词
D O I
10.1088/0031-9155/56/5/013
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
There has recently been increased interest in developing tensor data processing methods for the new medical imaging modality referred to as diffusion tensor magnetic resonance imaging (DT-MRI). This paper proposes a method for interpolating the primary vector fields from human cardiac DT-MRI, with the particularity of achieving interpolation and denoising simultaneously. The method consists of localizing the noise-corrupted vectors using the local statistical properties of vector fields, removing the noise-corrupted vectors and reconstructing them by using the thin plate spline (TPS) model, and finally applying global TPS interpolation to increase the resolution in the spatial domain. Experiments on 17 human hearts show that the proposed method allows us to obtain higher resolution while reducing noise, preserving details and improving direction coherence (DC) of vector fields as well as fiber tracking. Moreover, the proposed method perfectly reconstructs azimuth and elevation angle maps.
引用
收藏
页码:1415 / 1430
页数:16
相关论文
共 50 条
  • [21] SMT: Split and merge tractography for DT-MRI
    Bozkaya, Ugur
    Acar, Burak
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION- MICCAI 2007, PT 2, PROCEEDINGS, 2007, 4792 : 153 - +
  • [22] DT-MRI denoising and neuronal fiber tracking
    McGraw, T
    Vemuri, BC
    Chen, Y
    Rao, M
    Mareci, T
    MEDICAL IMAGE ANALYSIS, 2004, 8 (02) : 95 - 111
  • [23] Parallel simulation of anisotropic diffusion with human brain DT-MRI data
    Kang, N
    Zhang, J
    Carlson, ES
    COMPUTERS & STRUCTURES, 2004, 82 (28) : 2389 - 2399
  • [24] DT-MRI estimation, regularization and fiber tractography
    Deriche, R
    Tschumperlé, D
    Lenglet, C
    2004 2ND IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: MACRO TO NANO, VOLS 1 AND 2, 2004, : 9 - 12
  • [25] Analytical computation of the eigenvalues and eigenvectors in DT-MRI
    Hasan, KM
    Basser, PJ
    Parker, DL
    Alexander, AL
    JOURNAL OF MAGNETIC RESONANCE, 2001, 152 (01) : 41 - 47
  • [26] DT-MRI segmentation using graph cuts
    Weldeselassie, Yonas T.
    Hamarneh, Ghassan
    MEDICAL IMAGING 2007: IMAGE PROCESSING, PTS 1-3, 2007, 6512
  • [27] DT-MRI images:: estimation, regularization, and application
    Tschumperlé, D
    Deriche, R
    COMPUTER AIDED SYSTEMS THEORY - EUROCAST 2003, 2003, 2809 : 530 - 541
  • [28] Riemannian graph diffusion for DT-MRI regularization
    Zhang, Fan
    Hancock, Edwin R.
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2006, PT 2, 2006, 4191 : 234 - 242
  • [29] Fast invariant riemannian DT-MRI regularization
    Gur, Yaniv
    Sochen, Nir
    2007 IEEE 11TH INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOLS 1-6, 2007, : 2449 - 2455
  • [30] Probabilistic brain lesion segmentation in dt-mri
    Agam, Gady
    Weiss, Daniel
    Soman, Mandar
    Arfanakis, Konstantinos
    2006 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP 2006, PROCEEDINGS, 2006, : 89 - +