Hyperspectral Image Super-Resolution by Spectral Mixture Analysis and Spatial-Spectral Group Sparsity

被引:87
|
作者
Li, Jie [1 ]
Yuan, Qiangqiang [2 ,3 ]
Shen, Huanfeng [4 ]
Meng, Xiangchao [4 ]
Zhang, Liangpei [3 ,5 ]
机构
[1] Wuhan Univ, Int Sch Software, Wuhan 430079, Peoples R China
[2] Wuhan Univ, Sch Geodesy & Geomat, Wuhan 430079, Peoples R China
[3] Wuhan Univ, Collaborat Innovat Ctr Geospatial Technol, Wuhan 430079, Peoples R China
[4] Wuhan Univ, Sch Resource & Environm Sci, Wuhan 430079, Peoples R China
[5] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan 430079, Peoples R China
基金
中国国家自然科学基金;
关键词
Hyperspectral image (HSI); sparse representation; super-resolution (SR); INTERPOLATION;
D O I
10.1109/LGRS.2016.2579661
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Due to the limitation of hyperspectral sensors and optical imaging systems, there are several irreconcilable conflicts between high spatial resolution and high spectral resolution of hyper-spectral images (HSIs). Therefore, HSI super-resolution (SR) is regarded as an important preprocessing task for subsequent applications. In this letter, we use sparse representation to analyze the spectral and spatial feature of HSIs. Considering the sparse characteristic of spectral unmixing and high pattern repeatability of spatial-spectral blocks, we proposed a novel HSI SR framework utilizing spectral mixture analysis and spatial-spectral group sparsity. By simultaneously combining the sparsity and the nonlocal self-similarity of the images in the spatial and spectral domains, the method not only maintains the spectral consistency but also produces plenty of image details. Experiments on three hyperspectral data sets confirmthat the proposed method is robust to noise and achieves better results than traditional methods.
引用
收藏
页码:1250 / 1254
页数:5
相关论文
共 50 条
  • [21] Joint Spatial-Spectral Smoothing in a Minimum-Volume Simplex for Hyperspectral Image Super-Resolution
    Ma, Fei
    Yang, Feixia
    Ping, Ziliang
    Wang, Wenqin
    APPLIED SCIENCES-BASEL, 2020, 10 (01):
  • [22] Spatial-Spectral Structured Sparse Low-Rank Representation for Hyperspectral Image Super-Resolution
    Xue, Jize
    Zhao, Yong-Qiang
    Bu, Yuanyang
    Liao, Wenzhi
    Chan, Jonathan Cheung-Wai
    Philips, Wilfried
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 3084 - 3097
  • [23] Multistage Spatial-Spectral Fusion Network for Spectral Super-Resolution
    Wu, Yaohang
    Dian, Renwei
    Li, Shutao
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024,
  • [24] Hyperspectral image super-resolution with spectral-spatial network
    Jia, Jinrang
    Ji, Luyan
    Zhao, Yongchao
    Geng, Xiurui
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2018, 39 (22) : 7806 - 7829
  • [25] DUAL 1D-2D SPATIAL-SPECTRAL CNN FOR HYPERSPECTRAL IMAGE SUPER-RESOLUTION
    Li, Jiaojiao
    Cui, Ruxing
    Li, Bo
    Li, Yunsong
    Mei, Shaohui
    Du, Qian
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 3113 - 3116
  • [26] Super-Resolution Mapping Based on Spatial-Spectral Correlation for Spectral Imagery
    Wang, Peng
    Wang, Liguo
    Leung, Henry
    Zhang, Gong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (03): : 2256 - 2268
  • [27] Hyperspectral Image Super-Resolution Based on Spatial Group Sparsity Regularization Unmixing
    Li, Jun
    Peng, Yuanxi
    Jiang, Tian
    Zhang, Longlong
    Long, Jian
    APPLIED SCIENCES-BASEL, 2020, 10 (16):
  • [28] A spectral and spatial transformer for hyperspectral remote sensing image super-resolution
    Wang, Bingqian
    Chen, Jianhua
    Wang, Huajun
    Tang, Yipeng
    Chen, Jiongling
    Jiang, Ye
    INTERNATIONAL JOURNAL OF DIGITAL EARTH, 2024, 17 (01)
  • [29] A novel spatial and spectral transformer network for hyperspectral image super-resolution
    Wu, Huapeng
    Xu, Hui
    Zhan, Tianming
    MULTIMEDIA SYSTEMS, 2024, 30 (03)
  • [30] Hyperspectral Image Super-Resolution Based on Spatial and Spectral Correlation Fusion
    Yi, Chen
    Zhao, Yong-Qiang
    Chan, Jonathan Cheung-Wai
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (07): : 4165 - 4177