Seed coating with inocula of arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria for nutritional enhancement of maize under different fertilisation regimes

被引:33
|
作者
Rocha, Ines [1 ]
Ma, Ying [1 ]
Carvalho, Maria F. [2 ]
Magalhaes, Catarina [2 ]
Janouskova, Martina [3 ]
Vosatka, Miroslav [3 ]
Freitas, Helena [1 ]
Oliveira, Rui S. [1 ,4 ]
机构
[1] Univ Coimbra, Dept Life Sci, Ctr Funct Ecol Sci People & Planet, Coimbra, Portugal
[2] Univ Porto, CIIMAR Interdisciplinary Ctr Marine & Environm Re, Matosinhos, Portugal
[3] Acad Sci Czech Republ, Inst Bot, Pruhonice, Czech Republic
[4] Polytech Inst Porto, Sch Hlth, Res Ctr Hlth & Environm, Dept Environm Hlth, Porto, Portugal
关键词
Plant growth promoting microorganisms; biofertilisers; soil inoculation; fertility; sustainable agriculture; PHOSPHORUS-NUTRITION; NUTRIENT-UPTAKE; PSEUDOMONAS-FLUORESCENS; GRAIN QUALITY; WATER-DEFICIT; WHEAT; SOIL; PGPR; STRAINS; ROOTS;
D O I
10.1080/03650340.2018.1479061
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Arbuscular mycorrhizal (AM) fungi and plant growth-promoting rhizobacteria, responsible for enhancing plant nutrition, vigour and growth, may be used to reduce dosages of chemical fertilisers. Technologies that allow an economically viable and efficient application of these beneficial microbes in large scale agriculture must be studied. Seed coating is a potential delivery system for efficiently introducing minor amounts of bioinoculants. Despite the dramatic reduction on inoculum dose per plant, inoculation of AM fungi via seed coating was as effective as conventional soil inoculation. Fertilisation and inoculation had a significant impact on maize shoots nutrient concentrations. Different fertilisation regimes did not influence mycorrhizal colonisation. Plants without fertilisation and singly inoculated with R. irregularis showed shoot nutrient concentration increments of 110, 93, 88 and 175% for nitrogen, phosphorus, potassium and zinc, respectively, comparing with non-inoculated controls. Plants singly inoculated with P. fluorescens via seed coating under full fertilisation, presented enhancements of 100, 75 and 141% for magnesium, zinc and manganese, respectively, comparing with non-inoculated controls. Seed coating is a promising tool for delivering microbial inoculants into the soil, while promoting sustainable production of maize. This technology is particularly pertinent in low input agriculture, with potential environmental profits and food quality improvements.
引用
收藏
页码:31 / 43
页数:13
相关论文
共 50 条
  • [1] Harnessing of plant growth-promoting rhizobacteria and arbuscular mycorrhizal fungi in agroecosystem sustainability
    Oluwaseun Adeyinka Fasusi
    Olubukola Oluranti Babalola
    Timothy Olubisi Adejumo
    CABI Agriculture and Bioscience, 4
  • [2] Harnessing of plant growth-promoting rhizobacteria and arbuscular mycorrhizal fungi in agroecosystem sustainability
    Fasusi, Oluwaseun Adeyinka
    Babalola, Olubukola Oluranti
    Adejumo, Timothy Olubisi
    CABI AGRICULTURE & BIOSCIENCE, 2023, 4 (01):
  • [3] Arbuscular Mycorrhizal Fungi and Plant Growth-Promoting Rhizobacteria Enhance Soil Key Enzymes, Plant Growth, Seed Yield, and Qualitative Attributes of Guar
    El-Sawah, Ahmed M.
    El-Keblawy, Ali
    Ali, Dina Fathi Ismail
    Ibrahim, Heba M.
    El-Sheikh, Mohamed A.
    Sharma, Anket
    Alhaj Hamoud, Yousef
    Shaghaleh, Hiba
    Brestic, Marian
    Skalicky, Milan
    Xiong, You-Cai
    Sheteiwy, Mohamed S.
    AGRICULTURE-BASEL, 2021, 11 (03): : 1 - 19
  • [4] Compost Effect on Plant Growth-Promoting Rhizobacteria and Mycorrhizal Fungi Population in Maize Cultivations
    Viti, C.
    Tatti, E.
    Decorosi, F.
    Lista, E.
    Rea, E.
    Tullio, M.
    Sparvoli, E.
    Giovannetti, L.
    COMPOST SCIENCE & UTILIZATION, 2010, 18 (04) : 273 - 281
  • [5] Compost Effect on Plant Growth-Promoting Rhizobacteria and Mycorrhizal Fungi Population in Maize Cultivations
    Viti C.
    Tatti E.
    Decorosi F.
    Lista E.
    Giovannetti L.
    Rea E.
    Tullio M.
    Sparvoli E.
    Compost Science and Utilization, 2010, 18 (04): : 273 - 281
  • [6] Inoculation of Arbuscular Mycorrhizal Fungi and Plant Growth Promoting Rhizobacteria in Modulating Phosphorus Dynamics in Turmeric Rhizosphere
    Dutta, Shanti Chaya
    Neog, Bijoy
    NATIONAL ACADEMY SCIENCE LETTERS-INDIA, 2017, 40 (06): : 445 - 449
  • [7] Inoculation of Arbuscular Mycorrhizal Fungi and Plant Growth Promoting Rhizobacteria in Modulating Phosphorus Dynamics in Turmeric Rhizosphere
    Shanti Chaya Dutta
    Bijoy Neog
    National Academy Science Letters, 2017, 40 : 445 - 449
  • [8] Synergistic effects of Arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria in bioremediation of iron contaminated soils
    Mishra, Vartika
    Gupta, Antriksh
    Kaur, Parvinder
    Singh, Simranjeet
    Singh, Nasib
    Gehlot, Praveen
    Singh, Joginder
    INTERNATIONAL JOURNAL OF PHYTOREMEDIATION, 2016, 18 (07) : 697 - 703
  • [9] Mine land valorization through energy maize production enhanced by the application of plant growth-promoting rhizobacteria and arbuscular mycorrhizal fungi
    Helena Moreira
    Sofia I. A. Pereira
    Ana P. G. C. Marques
    António O. S. S. Rangel
    Paula M. L. Castro
    Environmental Science and Pollution Research, 2016, 23 : 6940 - 6950
  • [10] Mine land valorization through energy maize production enhanced by the application of plant growth-promoting rhizobacteria and arbuscular mycorrhizal fungi
    Moreira, Helena
    Pereira, Sofia I. A.
    Marques, Ana P. G. C.
    Rangel, Antnio O. S. S.
    Castro, Paula M. L.
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2016, 23 (07) : 6940 - 6950