Mine land valorization through energy maize production enhanced by the application of plant growth-promoting rhizobacteria and arbuscular mycorrhizal fungi

被引:0
|
作者
Helena Moreira
Sofia I. A. Pereira
Ana P. G. C. Marques
António O. S. S. Rangel
Paula M. L. Castro
机构
[1] CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado,
[2] Escola Superior de Biotecnologia,undefined
[3] Universidade Católica Portuguesa/Porto,undefined
关键词
Maize; PGPR; AMF; Zinc; Phytomanagement;
D O I
暂无
中图分类号
学科分类号
摘要
The use of heavy metals (HM) contaminated soils to grow energy crops can diminish the negative impact of HM in the environment improving land restoration. The effect of two PGPR (B1—Chryseobacterium humi ECP37T and B2—Pseudomonas reactans EDP28) and an AMF (F—Rhizophagus irregularis) on growth, Cd and Zn accumulation, and nutritional status of energy maize plants grown in a soil collected from an area adjacent to a Portuguese mine was assessed in a greenhouse experiment. Both bacterial strains, especially when co-inoculated with the AMF, acted as plant growth-promoting inoculants, increasing root and shoot biomass as well as shoot elongation. Cadmium was not detected in the maize tissues and a decrease in Zn accumulation was observed for all microbial treatments in aboveground and belowground tissues—with inoculation of maize with AMF and strain B2 leading to maximum reductions in Zn shoot and root accumulation of up to 48 and 43 %, respectively. Although microbial single inoculation generally did not increase N and P levels in maize plants, co-inoculation of the PGPR and the AMF improved substantially P accumulation in roots. The DGGE analysis of the bacterial rhizosphere community showed that the samples inoculated with the AMF clustered apart of those without the AMF and the Shannon-Wiener Index (H′) increased over the course of the experiment when both inoculants were present. This work shows the benefits of combined inoculation of AMF and PGPR for the growth energy maize in metal contaminated soils and their potential for the application in phytomanagement strategies.
引用
收藏
页码:6940 / 6950
页数:10
相关论文
共 50 条
  • [1] Mine land valorization through energy maize production enhanced by the application of plant growth-promoting rhizobacteria and arbuscular mycorrhizal fungi
    Moreira, Helena
    Pereira, Sofia I. A.
    Marques, Ana P. G. C.
    Rangel, Antnio O. S. S.
    Castro, Paula M. L.
    [J]. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2016, 23 (07) : 6940 - 6950
  • [2] Harnessing of plant growth-promoting rhizobacteria and arbuscular mycorrhizal fungi in agroecosystem sustainability
    Fasusi, Oluwaseun Adeyinka
    Babalola, Olubukola Oluranti
    Adejumo, Timothy Olubisi
    [J]. CABI AGRICULTURE & BIOSCIENCE, 2023, 4 (01):
  • [3] Harnessing of plant growth-promoting rhizobacteria and arbuscular mycorrhizal fungi in agroecosystem sustainability
    Oluwaseun Adeyinka Fasusi
    Olubukola Oluranti Babalola
    Timothy Olubisi Adejumo
    [J]. CABI Agriculture and Bioscience, 4
  • [4] Compost Effect on Plant Growth-Promoting Rhizobacteria and Mycorrhizal Fungi Population in Maize Cultivations
    Viti, C.
    Tatti, E.
    Decorosi, F.
    Lista, E.
    Rea, E.
    Tullio, M.
    Sparvoli, E.
    Giovannetti, L.
    [J]. COMPOST SCIENCE & UTILIZATION, 2010, 18 (04) : 273 - 281
  • [5] Plant Growth Promoting Rhizobacteria (PGPR) and Arbuscular Mycorrhizal Fungi Combined Application Reveals Enhanced Soil Fertility and Rice Production
    Chen, Delai
    Saeed, Munawar
    Ali, Mian Noor Hussain Asghar
    Raheel, Muhammad
    Ashraf, Waqas
    Hassan, Zeshan
    Hassan, Muhammad Zeeshan
    Farooq, Umar
    Hakim, Muhammad Fahad
    Rao, Muhammad Junaid
    Naqvi, Syed Atif Hasan
    Moustafa, Mahmoud
    Al-Shehri, Mohammed
    Negm, Sally
    [J]. AGRONOMY-BASEL, 2023, 13 (02):
  • [6] Above-and below-ground feedback loop of maize is jointly enhanced by plant growth-promoting rhizobacteria and arbuscular mycorrhizal fungi in drier soil
    Khan, Wasim
    Zhu, Ying
    Khan, Aziz
    Zhao, Ling
    Yang, Yu-Miao
    Wang, Ning
    Hao, Meng
    Ma, Yue
    Nepal, Jaya
    Ullah, Fazal
    Rehman, Muhammad Maqsood Ur
    Abrar, Muhammad
    Xiong, You-Cai
    [J]. SCIENCE OF THE TOTAL ENVIRONMENT, 2024, 917
  • [7] Amelioration of water deficiency stress in roselle (Hibiscus sabdariffa) by arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria
    Sanayei, Sara
    Barmaki, Morteza
    Ebadi, Ali
    Torabi-Giglou, Mousa
    [J]. NOTULAE BOTANICAE HORTI AGROBOTANICI CLUJ-NAPOCA, 2021, 49 (02) : 1 - 17
  • [8] Effects of antagonistic fungi, plant growth-promoting rhizobacteria, and arbuscular mycorrhizal fungi alone and in combination on the reproduction of Meloidogyne incognita and growth of tomato
    Siddiqui, Zaki A.
    Akhtar, M. Sayeed
    [J]. JOURNAL OF GENERAL PLANT PATHOLOGY, 2009, 75 (02) : 144 - 153
  • [9] Effects of antagonistic fungi, plant growth-promoting rhizobacteria, and arbuscular mycorrhizal fungi alone and in combination on the reproduction of Meloidogyne incognita and growth of tomato
    Zaki A. Siddiqui
    M. Sayeed Akhtar
    [J]. Journal of General Plant Pathology, 2009, 75
  • [10] Application of Light-Emitting Diodes with Plant Growth-Promoting Rhizobacteria and Arbuscular Mycorrhiza Fungi for Tomato Seedling Production
    Songsaeng, Apisit
    Tittabutr, Panlada
    Umnajkitikorn, Kamolchanok
    Boonkerd, Nantakorn
    Wongdee, Jenjira
    Songwattana, Pongpan
    Piromyou, Pongdet
    Greetatorn, Teerana
    Girdthai, Teerayoot
    Teaumroong, Neung
    [J]. AGRONOMY-BASEL, 2022, 12 (10):