Highly Efficient Perovskite-Perovskite Tandem Solar Cells Reaching 80% of the Theoretical Limit in Photovoltage

被引:270
|
作者
Rajagopal, Adharsh [1 ]
Yang, Zhibin [1 ]
Jo, Sae Byeok [1 ]
Braly, Ian L. [2 ]
Liang, Po-Wei [1 ]
Hillhouse, Hugh W. [2 ]
Jen, Alex K. -Y. [1 ,3 ]
机构
[1] Univ Washington, Dept Mat Sci & Engn, Seattle, WA 98195 USA
[2] Univ Washington, Dept Chem Engn, Mol Engn & Sci Inst, Seattle, WA 98195 USA
[3] City Univ Hong Kong, Dept Biol & Chem, Kowloon 999077, Hong Kong, Peoples R China
基金
美国国家科学基金会;
关键词
hysteresis and photostability; monolithic tandem; open-circuit voltage; optical simulations; solar water splitting; OPEN-CIRCUIT VOLTAGE; HALIDE PEROVSKITES; RECOMBINATION; EVOLUTION; LENGTHS; SN;
D O I
10.1002/adma.201702140
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Organic-inorganic hybrid perovskite multijunction solar cells have immense potential to realize power conversion efficiencies (PCEs) beyond the Shockley-Queisser limit of single-junction solar cells; however, they are limited by large nonideal photovoltage loss (V-oc,V-loss) in small- and large-bandgap subcells. Here, an integrated approach is utilized to improve the V-oc of subcells with optimized bandgaps and fabricate perovskite-perovskite tandem solar cells with small V-oc,V-loss. A fullerene variant, Indene-C-60 bis-adduct, is used to achieve optimized interfacial contact in a small-bandgap (approximate to 1.2 eV) subcell, which facilitates higher quasi-Fermi level splitting, reduces nonradiative recombination, alleviates hysteresis instabilities, and improves V-oc to 0.84 V. Compositional engineering of large-bandgap (approximate to 1.8 eV) perovskite is employed to realize a subcell with a transparent top electrode and photostabilized V-oc of 1.22 V. The resultant monolithic perovskite-perovskite tandem solar cell shows a high V-oc of 1.98 V (approaching 80% of the theoretical limit) and a stabilized PCE of 18.5%. The significantly minimized nonideal V-oc,V-loss is better than state-of-the-art silicon-perovskite tandem solar cells, which highlights the prospects of using perovskite-perovskite tandems for solar-energy generation. It also unlocks opportunities for solar water splitting using hybrid perovskites with solar-to-hydrogen efficiencies beyond 15%.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Controllable Electrochemical Deposition and Theoretical Understanding of Conformal Perovskite on Textured Silicon towards Efficient Perovskite/Silicon Tandem Solar Cells
    Wang, Yangrunqian
    Gao, Chao
    Wang, Xin
    Liu, Hong
    Shen, Wenzhong
    JOURNAL OF PHYSICAL CHEMISTRY C, 2021, 125 (05): : 2875 - 2883
  • [32] Perovskite/perovskite planar tandem solar cells: A comprehensive guideline for reaching energy conversion efficiency beyond 30%
    Hossain, Mohammad Ismail
    Saleque, Ahmed M.
    Ahmed, Safayet
    Saidjafarzoda, Ilhom
    Shahiduzzaman, Md
    Qarony, Wayesh
    Knipp, Dietmar
    Biyikli, Necmi
    Tsang, Yuen Hong
    NANO ENERGY, 2021, 79
  • [33] Scalable and efficient all-perovskite tandem solar cells
    Chu, Qian-Qian
    Cheng, Bo
    Fang, Baizeng
    MATTER, 2022, 5 (09) : 2584 - 2586
  • [34] Recent progress on efficient perovskite/organic tandem solar cells
    Rongbo Wang
    Meidouxue Han
    Ya Wang
    Juntao Zhao
    Jiawei Zhang
    Yi Ding
    Ying Zhao
    Xiaodan Zhang
    Guofu Hou
    Journal of Energy Chemistry, 2023, 83 (08) : 158 - 172
  • [35] Recent progress on efficient perovskite/organic tandem solar cells
    Wang, Rongbo
    Han, Meidouxue
    Wang, Ya
    Zhao, Juntao
    Zhang, Jiawei
    Ding, Yi
    Zhao, Ying
    Zhang, Xiaodan
    Hou, Guofu
    JOURNAL OF ENERGY CHEMISTRY, 2023, 83 : 158 - 172
  • [36] Highly efficient double-side-passivated perovskite solar cells for reduced degradation and low photovoltage loss
    Dipta, Shahriyar Safat
    Rahaman, Md Habibur
    Tarique, Walia Binte
    Howlader, Ashraful Hossain
    Pratik, Ayush
    Stride, John A.
    Uddin, Ashraf
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2024, 266
  • [37] Highly efficient monolithic perovskite/CIGSe tandem solar cells on rough bottom cell surfaces
    Jogt, Marko
    Bertram, Tobias
    Koushik, Dibyashree
    Marquez, Jose A.
    Verheijen, Marcel A.
    Heinemann, Marc Daniel
    Koehnen, Eike
    Al-Ashouri, Amran
    Rech, Bernd
    Unold, Thomas
    Creatore, Mariadriana
    Lauermann, Iver
    Kaufmann, Christian A.
    Schlatmann, Rutger
    Albrecht, Steve
    2019 IEEE 46TH PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC), 2019, : 738 - 742
  • [38] Stabilizing efficient wide-bandgap perovskite in perovskite-organic tandem solar cells
    Guo, Xiao
    Jia, Zhenrong
    Liu, Shunchang
    Guo, Renjun
    Jiang, Fangyuan
    Shi, Yangwei
    Dong, Zijing
    Luo, Ran
    Wang, Yu-Duan
    Shi, Zhuojie
    Li, Jia
    Chen, Jinxi
    Lee, Ling Kai
    Mueller-Buschbaum, Peter
    Ginger, David S.
    Paterson, David J.
    Hou, Yi
    JOULE, 2024, 8 (09) : 2554 - 2569
  • [39] Highly Efficient Monolithic Perovskite/Perovskite/Silicon Triple-Junction Solar Cells
    Li, Faming
    Wu, Dan
    Shang, Le
    Xia, Rui
    Zhang, Hengrui
    Huang, Zhengxin
    Gong, Jue
    Mao, Lin
    Zhang, Hao
    Sun, Yinqing
    Yang, Tian
    Sun, Xianggang
    Feng, Zhiqiang
    Liu, Mingzhen
    ADVANCED MATERIALS, 2024,
  • [40] Highly Efficient Monolithic Perovskite/Perovskite/Silicon Triple-Junction Solar Cells
    Li, Faming
    Wu, Dan
    Shang, Le
    Xia, Rui
    Zhang, Hengrui
    Huang, Zhengxin
    Gong, Jue
    Mao, Lin
    Zhang, Hao
    Sun, Yinqing
    Yang, Tian
    Sun, Xianggang
    Feng, Zhiqiang
    Liu, Mingzhen
    Advanced Materials, 2024, 36 (16)