Low-Temperature Electrolyte Design for Lithium-Ion Batteries: Prospect and Challenges

被引:134
|
作者
Li, Qian [1 ,2 ]
Liu, Gang [1 ,2 ]
Cheng, Haoran [1 ,2 ]
Sun, Qujiang [3 ]
Zhang, Junli [3 ]
Ming, Jun [1 ,2 ]
机构
[1] Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Rare Earth Resource Utilizat, Changchun 130022, Peoples R China
[2] Univ Sci & Technol China, Sch Appl Chem & Engn, Hefei 230026, Peoples R China
[3] Lanzhou Univ, Sch Phys Sci & Technol, Key Lab Magnetism & Magnet Mat, Minist Educ, Lanzhou 730000, Peoples R China
基金
中国国家自然科学基金;
关键词
electrode; lithium-ion batteries; low-temperature electrolyte; solid electrolyte interphase; solvation structure; PROPYLENE CARBONATE; SOLID-ELECTROLYTE; ESTER COSOLVENTS; ELECTROCHEMICAL PERFORMANCE; FLUOROETHYLENE CARBONATE; NONAQUEOUS ELECTROLYTES; POLYMER ELECTROLYTE; GRAPHITE ELECTRODE; ETHYLENE CARBONATE; LIFEPO4/C CATHODE;
D O I
10.1002/chem.202101407
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Lithium-ion batteries have dominated the energy market from portable electronic devices to electric vehicles. However, the LIBs applications are limited seriously when they were operated in the cold regions and seasons if there is no thermal protection. This is because the Li+ transportation capability within the electrode and particularly in the electrolyte dropped significantly due to the decreased electrolyte liquidity, leading to a sudden decline in performance and short cycle-life. Thus, design a low-temperature electrolyte becomes ever more important to enable the further applications of LIBs. Herein, we summarize the low-temperature electrolyte development from the aspects of solvent, salt, additives, electrolyte analysis, and performance in the different battery systems. Then, we also introduce the recent new insight about the cation solvation structure, which is significant to understand the interfacial behaviors at the low temperature, aiming to guide the design of a low-temperature electrolyte more effectively.
引用
收藏
页码:15842 / 15865
页数:24
相关论文
共 50 条
  • [41] Anion-Dominated Conventional-Concentrations Electrolyte to Improve Low-Temperature Performance of Lithium-Ion Batteries
    Chen, Nan
    Feng, Mai
    Li, Chengjie
    Shang, Yanxin
    Ma, Yue
    Zhang, Jinxiang
    Li, Yifan
    Chen, Guoshuai
    Wu, Feng
    Chen, Renjie
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (33)
  • [42] Mitigating Swelling of the Solid Electrolyte Interphase using an Inorganic Anion Switch for Low-temperature Lithium-ion Batteries
    Liang, Jia-Yan
    Zhang, Yanyan
    Xin, Sen
    Tan, Shuang-Jie
    Meng, Xin-Hai
    Wang, Wen-Peng
    Shi, Ji-Lei
    Wang, Zhen-Bo
    Wang, Fuyi
    Wan, Li-Jun
    Guo, Yu-Guo
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (16)
  • [43] Rational Design of Fluorinated Electrolytes for Low Temperature Lithium-Ion Batteries
    Yoo, Dong-Joo
    Liu, Qian
    Cohen, Orion
    Kim, Minkyu
    Persson, Kristin A. A.
    Zhang, Zhengcheng
    ADVANCED ENERGY MATERIALS, 2023, 13 (20)
  • [44] Electrolyte Design for Low-Temperature Li-Metal Batteries: Challenges and Prospects
    Sun, Siyu
    Wang, Kehan
    Hong, Zhanglian
    Zhi, Mingjia
    Zhang, Kai
    Xu, Jijian
    NANO-MICRO LETTERS, 2024, 16 (01)
  • [45] Constructing advanced electrode materials for low-temperature lithium-ion batteries: A review
    Zhang, Dan
    Tan, Chao
    Ou, Ting
    Zhang, Shengrui
    Li, Le
    Ji, Xiaohui
    ENERGY REPORTS, 2022, 8 : 4525 - 4534
  • [46] Effect of anode binders on low-temperature performance of automotive lithium-ion batteries
    Ji-Yong, Eom
    Lei, Cao
    JOURNAL OF POWER SOURCES, 2019, 441
  • [47] Methods for enhancing the capacity of electrode materials in low-temperature lithium-ion batteries
    Na, Ying
    Sun, Xiaohong
    Fan, Anran
    Cai, Shu
    Zheng, Chunming
    CHINESE CHEMICAL LETTERS, 2021, 32 (03) : 973 - 982
  • [48] Understanding the Role of SEI Layer in Low-Temperature Performance of Lithium-Ion Batteries
    Yoo, Dong-Joo
    Liu, Qian
    Cohen, Orion
    Kim, Minkyu
    Persson, Kristin A.
    Zhang, Zhengcheng
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (09) : 11910 - 11918
  • [49] A critical review of electrode materials and electrolytes for Low-Temperature Lithium-Ion Batteries
    Kulova, Tatiana L.
    Skundin, Alexander M.
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2020, 15 (09): : 8638 - 8661
  • [50] Electrolyte Design for Low-Temperature Li-Metal Batteries:Challenges and Prospects
    Siyu Sun
    Kehan Wang
    Zhanglian Hong
    Mingjia Zhi
    Kai Zhang
    Jijian Xu
    Nano-Micro Letters, 2024, 16 (02) : 371 - 388