HYPERELLIPTIC d-OSCULATING COVERS AND RATIONAL SURFACES

被引:0
|
作者
Treibich, Armando [1 ,2 ]
机构
[1] Univ Lille Nord France, Univ dArtois, Fac Sci Jean Perrin,EA2462, Federat CNRS Nord Pas de Calais,Lab Math Lens,FR, F-62300 Lens, France
[2] Univ Republica, Invest PEDECIBA, Ctr Matemat, Montevideo, Uruguay
来源
关键词
VRIES;
D O I
10.24033/bsmf.2669
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let d be a positive integer, K an algebraically closed field of characteristic p not equal 2 and X an elliptic curve defined over K. We consider the hyperelliptic curves equipped with a projection over X, such that the natural image of X in the Jacobian of the curve osculates to order d to the embedding of the curve, at a Weier-strass point. We first study the relations between the degree n, the arithmetic genus g and the osculating degree d of such covers. We prove that they are in a one-to-one correspondence with rational curves of linear systems in a rational surface and deduce (d - 1)-dimensional families of hyperelliptic d-osculating covers, of arbitrary big genus g if p = 0 or such that 2g < p(2d+ 1) if p>2. It follows at last, (g + d - 1)-dimensional families of solutions of the KdV hierarchy, doubly periodic with respect to the d-th variable.
引用
收藏
页码:379 / 409
页数:31
相关论文
共 50 条
  • [21] HYPERELLIPTIC SURFACES
    SUWA, T
    JOURNAL OF THE FACULTY OF SCIENCE UNIVERSITY OF TOKYO SECTION 1-MATHEMATICS ASTRONOMY PHYSICS CHEMISTRY, 1970, 16 : 469 - &
  • [22] Hyperelliptic d-Tangential Covers and dx d-Matrix KdV Elliptic Solitons
    Treibich, Armando
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2020, 2020 (23) : 9539 - 9558
  • [23] Dupin cyclides osculating surfaces
    Bartoszek, Adam
    Walczak, Pawe G.
    Walczak, Szymon M.
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2014, 45 (01): : 179 - 195
  • [24] Dupin cyclides osculating surfaces
    Adam Bartoszek
    Paweł G. Walczak
    Szymon M. Walczak
    Bulletin of the Brazilian Mathematical Society, New Series, 2014, 45 : 179 - 195
  • [25] Branched covers and pencils on hyperelliptic Lefschetz fibrations
    Fuller, Terry
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2024, 76 (03) : 791 - 812
  • [26] Hyperelliptic Covers of Different Degree for Elliptic Curves
    Fan, Jing
    Fan, Xuejun
    Song, Ningning
    Wang, Long
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2022, 2022
  • [27] Prym varieties of etale covers of hyperelliptic curves
    Lange, Herbert
    Ortega, Angela
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2018, 18 (02) : 467 - 482
  • [28] Erratum to: Fields of moduli and definition of hyperelliptic covers
    Yolanda Fuertes
    Gabino González-Diez
    Archiv der Mathematik, 2013, 101 : 599 - 600
  • [29] Beyond the exceptional potentials and hyperelliptic tangential covers
    Treibich, A
    Verdier, JL
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 325 (10): : 1101 - 1106
  • [30] Meanders, hyperelliptic pillowcase covers, and the Johnson filtration
    Jeffreys, Luke
    GEOMETRIAE DEDICATA, 2024, 218 (04)