Heat Integration and Optimization of Supercritical CO2 Recompression Cycle Coupled with Oxy-Coal Combustion

被引:5
|
作者
Wang, Shun-sen [1 ]
Feng, Xue-jia [2 ]
Wu, Chuang [2 ]
机构
[1] Xi An Jiao Tong Univ, Inst Turbomachinery, State Key Lab Multiphase Flow Power Engn, Xian 710049, Shaanxi, Peoples R China
[2] Xi An Jiao Tong Univ, Sch Energy & Power Engn, Xian 710049, Shaanxi, Peoples R China
关键词
Oxy-combustion; Supercritical CO2 cycle; Exergetic analysis; Thermodynamic optimization; FIRED POWER-PLANT; CARBON-DIOXIDE; PRE-COMBUSTION; CAPTURE; ENERGY; POSTCOMBUSTION; AMMONIA; TURBINE; EXERGY; SOFC;
D O I
10.1061/(ASCE)EY.1943-7897.0000581
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This study proposes a supercritical CO2 recompression cycle based on external oxy-coal combustion. It aims to evaluate and improve the performance of the system guided by energetic and exergetic analyses. The influence of the heat integration of the air separation unit (ASU) on performance is initially assessed and sensitivity analyses of cycle variables are then conducted. The system parameters are thermodynamically optimized using a genetic algorithm. Results show that the net efficiency of the base case is 42.13%. If ASU heat integration is considered, then the net efficiency increases to 45.1%, showing an efficiency increment of 2.97%. The comparison of the layouts reveals that the intercooled reheat cycle has the maximum net efficiency that can reach 47.73% when the optimal inlet and outlet pressures are 40 and 7.6 MPa, respectively. Finally, the proposed optimized system is compared with an ultra-supercritical pulverized coal (USC-PC) plant, and the economic performance is evaluated. Results show that the proposed optimized system is economically suitable, the net efficiency is comparable to that of the USC-PC plant, and the net efficiency with carbon capture is 4.27% higher than that of the USC-PC plant. (C) 2018 American Society of Civil Engineers.
引用
收藏
页数:18
相关论文
共 50 条
  • [11] PERFORMANCE ANALYSIS OF SUPERCRITICAL CO2 RECOMPRESSION POWER CYCLE WITH HEAT TRANSFER CHARACTERISTICS OF CO2
    Kim, Sunjin
    Cho, Yeonjoo
    Kim, Min Soo
    Kim, Minsung
    [J]. 5TH IIR INTERNATIONAL CONFERENCE ON THERMOPHYSICAL PROPERTIES AND TRANSFER PROCESSES OF REFRIGERANTS (TPTPR), 2017, : 859 - 866
  • [12] Radiation and convective heat transfer, and burnout in oxy-coal combustion
    Smart, J. P.
    O'Nions, P.
    Riley, G. S.
    [J]. FUEL, 2010, 89 (09) : 2468 - 2476
  • [13] Indirect integration of thermochemical energy storage with the recompression supercritical CO2 Brayton cycle
    Chen, Xiaoyi
    Jin, Xiaogang
    Ling, Xiang
    Wang, Yan
    [J]. ENERGY, 2020, 209
  • [14] Analysis and Performance Optimization of Supercritical CO2 Recompression Brayton Cycle Coupled Organic Rankine Cycle Based on Solar Tower
    Yu, Tingfang
    Song, Yuxi
    [J]. JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME, 2022, 144 (05):
  • [15] Size optimization of heat exchanger and thermoeconomic assessment for supercritical CO2 recompression Brayton cycle applied in marine
    Du, Yadong
    Hu, Chenxing
    Yang, Ce
    Wang, Haimei
    Dong, Wuqiang
    [J]. Energy, 2022, 239
  • [16] Size optimization of heat exchanger and thermoeconomic assessment for supercritical CO2 recompression Brayton cycle applied in marine
    Du, Yadong
    Hu, Chenxing
    Yang, Ce
    Wang, Haimei
    Dong, Wuqiang
    [J]. ENERGY, 2022, 239
  • [17] Multi-variable optimization of pressurized oxy-coal combustion
    Zebian, Hussam
    Gazzino, Marco
    Mitsos, Alexander
    [J]. ENERGY, 2012, 38 (01) : 37 - 57
  • [18] Integration of chemical looping combustion and supercritical CO2 cycle for combined heat and power generation with CO2 capture
    Chen, Shiyi
    Soomro, Ahsanullah
    Yu, Ran
    Hu, Jun
    Sun, Zhao
    Xiang, Wenguo
    [J]. ENERGY CONVERSION AND MANAGEMENT, 2018, 167 : 113 - 124
  • [19] Thermodynamic analysis and optimization of a supercritical CO2 regenerative recompression Brayton cycle coupled with a marine gas turbine for shipboard waste heat recovery
    Sharma, O. P.
    Kaushik, S. C.
    Manjunath, K.
    [J]. THERMAL SCIENCE AND ENGINEERING PROGRESS, 2017, 3 : 62 - 74
  • [20] Reducing the Power Penalty Related to CO2 Conditioning in Oxy-coal Combustion Plants by Pinch Analysis
    Fu, Chao
    Gundersen, Truls
    [J]. PRES 2011: 14TH INTERNATIONAL CONFERENCE ON PROCESS INTEGRATION, MODELLING AND OPTIMISATION FOR ENERGY SAVING AND POLLUTION REDUCTION, PTS 1 AND 2, 2011, 25 : 581 - 586