Normality of meromorphic functions and their differential polynomials

被引:0
|
作者
Xie, Jia [1 ]
Gu, Yongyi [2 ]
Yuan, Wenjun [3 ]
机构
[1] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Peoples R China
[2] Guangdong Univ Finance & Econ, Big Data & Educ Stat Applicat Lab, Guangzhou 510320, Peoples R China
[3] Software Engn Inst Guangzhou, Dept Basic Courses Teaching, Guangzhou 510990, Peoples R China
来源
SCIENCEASIA | 2021年 / 47卷 / 05期
关键词
meromorphic functions; differential polynomials; normality; NORMAL-FAMILIES; PICARD VALUES;
D O I
10.2306/scienceasia1513-1874.2021.070
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we study the normality of meromorphic families and prove the following theorem: Let k be a positive integer, P(z) be a non-constant polynomial satisfying P (0) = 0, h(not equivalent to 0) be a holomorphic function in a domain D, H(f, f' ,..., f((k))) be a differential polynomial with Gamma/gamma vertical bar(H) < k + 1, and F be a meromorphic family in D. If, for each f is an element of F, f not equal 0 and P (f((k)))+ H(f , f',..., f((k))) not equal h for z is an element of D, then F is a normal family in D.
引用
收藏
页码:645 / 650
页数:6
相关论文
共 50 条