Normality of meromorphic functions and their differential polynomials

被引:0
|
作者
Xie, Jia [1 ]
Gu, Yongyi [2 ]
Yuan, Wenjun [3 ]
机构
[1] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Peoples R China
[2] Guangdong Univ Finance & Econ, Big Data & Educ Stat Applicat Lab, Guangzhou 510320, Peoples R China
[3] Software Engn Inst Guangzhou, Dept Basic Courses Teaching, Guangzhou 510990, Peoples R China
来源
SCIENCEASIA | 2021年 / 47卷 / 05期
关键词
meromorphic functions; differential polynomials; normality; NORMAL-FAMILIES; PICARD VALUES;
D O I
10.2306/scienceasia1513-1874.2021.070
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we study the normality of meromorphic families and prove the following theorem: Let k be a positive integer, P(z) be a non-constant polynomial satisfying P (0) = 0, h(not equivalent to 0) be a holomorphic function in a domain D, H(f, f' ,..., f((k))) be a differential polynomial with Gamma/gamma vertical bar(H) < k + 1, and F be a meromorphic family in D. If, for each f is an element of F, f not equal 0 and P (f((k)))+ H(f , f',..., f((k))) not equal h for z is an element of D, then F is a normal family in D.
引用
收藏
页码:645 / 650
页数:6
相关论文
共 50 条
  • [1] NORMALITY OF MEROMORPHIC FUNCTIONS CONCERNING DIFFERENTIAL POLYNOMIALS
    Wang, Xiaoxiao
    Liu, Xiaojun
    Pang, Xuecheng
    [J]. HOUSTON JOURNAL OF MATHEMATICS, 2010, 36 (04): : 1173 - 1184
  • [2] Normality of meromorphic functions and differential polynomials share values
    Wenjun Yuan
    Jinchun Lai
    Zifeng Huang
    Zhi Liu
    [J]. Advances in Difference Equations, 2014
  • [3] Normality of meromorphic functions and differential polynomials share values
    Yuan, Wenjun
    Lai, Jinchun
    Huang, Zifeng
    Liu, Zhi
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2014,
  • [4] Normality and the differential polynomial of meromorphic functions
    Deng, Bingmao
    Liu, Dan
    Yang, Degui
    [J]. GEORGIAN MATHEMATICAL JOURNAL, 2014, 21 (03) : 261 - 266
  • [5] Homogeneous differential polynomials of meromorphic functions
    Lin, WC
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2005, 21 (02) : 261 - 266
  • [6] Zeros of Differential Polynomials of Meromorphic Functions
    An, Ta Thi Hoai
    Phuong, Nguyen Viet
    [J]. ACTA MATHEMATICA VIETNAMICA, 2022, 47 (01) : 211 - 221
  • [7] On Homogeneous Differential Polynomials of Meromorphic Functions
    Wei Chuan Lin
    Hong Xun Yi
    [J]. Acta Mathematica Sinica, 2005, 21 : 261 - 266
  • [8] On Homogeneous Differential Polynomials of Meromorphic Functions
    Wei Chuan LIN Department of Mathematics
    [J]. Acta Mathematica Sinica,English Series, 2005, 21 (02) : 261 - 266
  • [9] Zeros of Differential Polynomials of Meromorphic Functions
    Ta Thi Hoai An
    Nguyen Viet Phuong
    [J]. Acta Mathematica Vietnamica, 2022, 47 : 211 - 221
  • [10] Uniqueness for meromorphic functions and differential polynomials
    Meng, Chao
    [J]. TURKISH JOURNAL OF MATHEMATICS, 2009, 33 (04) : 331 - 340