ROC Curves in Non-Parametric Location-Scale Regression Models

被引:24
|
作者
Gonzalez-Manteiga, Wenceslao
Carlos Pardo-Fernandez, Juan [1 ]
van Keilegom, Ingrid
机构
[1] Univ Vigo, Dept Estatist & Invest Operat, EU Enxenaria Tecn Ind, Vigo 36208, Spain
基金
欧洲研究理事会;
关键词
area under the curve; conditional ROC curve; location-scale regression models; non-parametric regression; relative distribution; OPERATING CHARACTERISTIC CURVES; CONTINUOUS DIAGNOSTIC-TESTS; BANDWIDTH SELECTION;
D O I
10.1111/j.1467-9469.2010.00693.x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The receiver operating characteristic (ROC) curve is a tool of extensive use to analyse the discrimination capability of a diagnostic variable in medical studies. In certain situations, the presence of a covariate related to the diagnostic variable can increase the discriminating power of the ROC curve. In this article, we model the effect of the covariate over the diagnostic variable by means of non-parametric location-scale regression models. We propose a new non-parametric estimator of the conditional ROC curve and study its asymptotic properties. We also present some simulations and an illustration to a data set concerning diagnosis of diabetes.
引用
收藏
页码:169 / 184
页数:16
相关论文
共 50 条
  • [1] Comparison of ROC curves: Parametric and non-parametric techniques
    Halpern, EJ
    [J]. RADIOLOGY, 2001, 221 : 426 - 426
  • [2] Truncated location-scale non linear regression models
    Mota Paraiba, Carolina Costa
    Ribeiro Diniz, Carlos Alberto
    Nunes Maia, Aline de Holanda
    Rodrigues, Lineu Neiva
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (15) : 7355 - 7374
  • [3] A non-parametric test for comparing conditional ROC curves
    Fanjul-Hevia, Aris
    Gonzalez-Manteiga, Wenceslao
    Pardo-Fernandez, Juan Carlos
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2021, 157
  • [4] Non-parametric regression under location shifts
    Phillips, Peter C. B.
    Su, Liangjun
    [J]. ECONOMETRICS JOURNAL, 2011, 14 (03): : 457 - 486
  • [5] ` Reference curves based on non-parametric quantile regression
    Gannoun, A
    Girard, S
    Guinot, C
    Saracco, J
    [J]. STATISTICS IN MEDICINE, 2002, 21 (20) : 3119 - 3135
  • [6] ON NON-PARAMETRIC ESTIMATES OF DENSITY FUNCTIONS AND REGRESSION CURVES
    NADARAYA, EA
    [J]. THEORY OF PROBILITY AND ITS APPLICATIONS,USSR, 1965, 10 (01): : 186 - &
  • [7] Comparing the areas under two correlated ROC curves: Parametric and non-parametric approaches
    Molodianovitch, Katy
    Faraggi, David
    Reiser, Benjamin
    [J]. BIOMETRICAL JOURNAL, 2006, 48 (05) : 745 - 757
  • [8] NON-PARAMETRIC THEORY - SCALE AND LOCATION PARAMETERS
    FRASER, DAS
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1954, 6 (01): : 46 - 68
  • [9] CONSISTENCY AND EFFICIENCY OF REGRESSION COEFFICIENT ESTIMATES IN LOCATION-SCALE MODELS
    GOULD, A
    LAWLESS, JF
    [J]. BIOMETRIKA, 1988, 75 (03) : 535 - 540
  • [10] Estimation in nonparametric location-scale regression models with censored data
    Cédric Heuchenne
    Ingrid Van Keilegom
    [J]. Annals of the Institute of Statistical Mathematics, 2010, 62 : 439 - 463