Heat flow in the postquasistatic approximation

被引:2
|
作者
Rodriguez-Mueller, B. [1 ]
Peralta, C. [2 ,3 ]
Barreto, W.
Rosales, L. [4 ]
机构
[1] San Diego State Univ, Coll Sci, Computat Sci Res Ctr, San Diego, CA 92182 USA
[2] Deutsch Wetterdienst, D-63067 Offenbach, Germany
[3] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia
[4] Univ Expt Politecn Antonio Jose de Sucre, Lab Fis Computac, Puerto Ordaz, Venezuela
来源
PHYSICAL REVIEW D | 2010年 / 82卷 / 04期
关键词
RADIATING FLUID SPHERES; GRAVITATIONAL COLLAPSE; EVOLUTION;
D O I
10.1103/PhysRevD.82.044003
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We apply the postquasistatic approximation to study the evolution of spherically symmetric fluid distributions undergoing dissipation in the form of radial heat flow. For a model that corresponds to an incompressible fluid departing from the static equilibrium, it is not possible to go far from the initial state after the emission of a small amount of energy. Initially collapsing distributions of matter are not permitted. Emission of energy can be considered as a mechanism to avoid the collapse. If the distribution collapses initially and emits one hundredth of the initial mass only the outermost layers evolve. For a model that corresponds to a highly compressed Fermi gas, only the outermost shell can evolve with a shorter hydrodynamic time scale.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Flow curve approximation of high-strength aluminium alloys in heat-assisted forming processes
    Schmiedt, M.
    Schneider, R.
    Jung, J.
    Rimkus, W.
    De Silva, A. K. M.
    PRODUCTION ENGINEERING-RESEARCH AND DEVELOPMENT, 2024, 18 (3-4): : 435 - 446
  • [32] SECOND APPROXIMATION IN THEORY OF ASYMPTOTIC DAMPING OF PERTURBATIONS IN SUPERSONIC FLOW OF VISCOUS HEAT-CONDUCTING GAS
    DIESPERO.VN
    DOKLADY AKADEMII NAUK SSSR, 1968, 181 (04): : 815 - &
  • [33] Flow curve approximation of high-strength aluminium alloys in heat-assisted forming processes
    M. Schmiedt
    R. Schneider
    J. Jung
    W. Rimkus
    A. K. M. De Silva
    Production Engineering, 2024, 18 : 435 - 446
  • [34] HYDRODYNAMIC FLOW AND OSEENS APPROXIMATION
    WESTERVELT, PJ
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1953, 25 (05): : 951 - 953
  • [35] Uniform approximation of the heat kernel on a manifold
    Evelina Shamarova
    Alexandre B. Simas
    Archiv der Mathematik, 2017, 108 : 485 - 494
  • [36] Approximation of the conductivity coefficient in the heat equation
    Dou, Fangfang
    Liu, Huan
    APPLICABLE ANALYSIS, 2015, 94 (05) : 999 - 1010
  • [37] EDDINGTON APPROXIMATION IN RADIATIVE HEAT EQUATION
    UNNO, W
    SPIEGEL, EA
    PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF JAPAN, 1966, 18 (02) : 85 - &
  • [38] Uniform approximation of the heat kernel on a manifold
    Shamarova, Evelina
    Simas, Alexandre B.
    ARCHIV DER MATHEMATIK, 2017, 108 (05) : 485 - 494
  • [39] APPROXIMATION BY THE SOLUTIONS OF THE HEAT-EQUATION
    BYUN, DW
    SAITOH, S
    JOURNAL OF APPROXIMATION THEORY, 1994, 78 (02) : 226 - 238
  • [40] Heat pipe transient response approximation
    Reid, RS
    SPACE TECHNOLOGY AND APPLICATIONS INTERNATIONAL FORUM-STAIF 2002, 2002, 608 : 156 - 162