Inverse Optimal Trajectory Tracking for Discrete Time Nonlinear Positive Systems

被引:0
|
作者
Leon, Blanca S. [1 ]
Alanis, Alma Y. [2 ]
Sanchez, Edgar N. [1 ]
Ornelas, Fernando [1 ]
Ruiz-Velazquez, Eduardo [2 ]
机构
[1] CINVESTAV, Unidad Guadalajara, Apartado Postal 31-438,Plaza La Luna, Guadalajara 45091, Jalisco, Mexico
[2] Univ Guadalajara, CUCEI, Mexico City, DF 45080, Mexico
关键词
INSULIN; MODEL;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, discrete time inverse optimal trajectory tracking for a class of non-linear positive systems is proposed. The scheme is developed for MIMO (multi-input, multi-output) affine systems. This approach is adapted for glycemic control of type 1 diabetes mellitus (T1DM) patients. The control law calculates the insulin delivery rate in order to prevent hyperglycemia levels. A neural model is obtained from an on-line neural identifier, which uses a recurrent neural network, trained with the extended Kalman filter (EKF); this neural model has an affine form, which permits the applicability of inverse optimal control scheme. The proposed algorithm is tuned to follow a desired trajectory; this trajectory reproduces the glucose absorption of a healthy person. Simulation results illustrate the aplicability of the control law in biological processes.
引用
收藏
页码:1048 / 1053
页数:6
相关论文
共 50 条
  • [31] Distributed Inverse Optimal Control for Discrete-Time Nonlinear Multi-Agent Systems
    Belfo, Joao P.
    Aguiar, A. Pedro
    Lemos, Joao M.
    IEEE CONTROL SYSTEMS LETTERS, 2021, 5 (06): : 2096 - 2101
  • [32] Discrete-time nonlinear systems inverse optimal control: A control Lyapunov function approach
    CINVESTAV, Unidad Guadalajara, Jalisco, 45019, Mexico
    Proc. IEEE Int. Conf. Control Appl., 2011, (1431-1436):
  • [33] Limitations on optimal tracking performance of discrete time systems
    Toker, O
    Chen, J
    Qiu, L
    PROCEEDINGS OF THE 1997 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 1997, : 3887 - 3891
  • [34] Neural tracking trajectory of discrete-time nonlinear systems based on an exponential sliding mode algorithm
    Hernandez-Gonzalez, M.
    Vargas, E. A. Hernandez
    INTERNATIONAL JOURNAL OF GENERAL SYSTEMS, 2024, 53 (05) : 564 - 596
  • [35] Trajectory inverse kinematics by nonlinear, nongaussian tracking
    Qin, Chao
    Carreira-Perpinan, Miguell A.
    2008 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-12, 2008, : 2057 - 2060
  • [36] Data-Based Optimal Tracking Control of Nonaffine Nonlinear Discrete-Time Systems
    Luo, Biao
    Liu, Derong
    Huang, Tingwen
    Li, Chao
    NEURAL INFORMATION PROCESSING, ICONIP 2016, PT IV, 2016, 9950 : 573 - 581
  • [37] Event-Triggered Optimal Parallel Tracking Control for Discrete-Time Nonlinear Systems
    Lu, Jingwei
    Wei, Qinglai
    Liu, Yujia
    Zhou, Tianmin
    Wang, Fei-Yue
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2022, 52 (06): : 3772 - 3784
  • [38] Optimal Fixed-Point Tracking Control for Discrete-Time Nonlinear Systems viaADP
    Song, Ruizhuo
    Zhu, Liao
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2019, 6 (03) : 657 - 666
  • [39] Optimal Tracking Control of Affine Nonlinear Discrete-time Systems with Unknown Internal Dynamics
    Dierks, Travis
    Jagannathan, S.
    PROCEEDINGS OF THE 48TH IEEE CONFERENCE ON DECISION AND CONTROL, 2009 HELD JOINTLY WITH THE 2009 28TH CHINESE CONTROL CONFERENCE (CDC/CCC 2009), 2009, : 6750 - 6755
  • [40] Error-based adaptive optimal tracking control of nonlinear discrete-time systems
    Chun LI
    Jinliang DING
    Frank L.LEWIS
    Tianyou CHAI
    Science China(Information Sciences), 2024, 67 (01) : 154 - 167