Exactly scale-free scale-free networks

被引:20
|
作者
Zhang, Linjun [1 ,2 ]
Small, Michael [2 ]
Judd, Kevin [2 ]
机构
[1] Univ Penn, Wharton Sch, Dept Stat, Philadelphia, PA 19104 USA
[2] Univ Western Australia, Sch Math & Stat, Crawley, WA 6009, Australia
基金
澳大利亚研究理事会;
关键词
Scale-free networks; Power-law; Complex networks; RANDOM GRAPHS; DISTRIBUTIONS; MOTIFS;
D O I
10.1016/j.physa.2015.03.074
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Many complex natural and physical systems exhibit patterns of interconnection that conform, approximately, to a network structure referred to as scale-free. Preferential attachment is one of many algorithms that have been introduced to model the growth and structure of scale-free networks. With so many different models of scale-free networks it is unclear what properties of scale-free networks are typical, and what properties are peculiarities, of a particular growth or construction process. We propose a simple maximum entropy process which provides the best representation of what are typical properties of scale-free networks, and provides a standard against which real and algorithmically generated networks can be compared. As an example we consider preferential attachment and find that this particular growth model does not yield typical realizations of scale-free networks. In particular, the widely discussed "fragility" of scale-free networks is actually found to be due to the peculiar "hub-centric" structure of preferential attachment networks. We provide a method to generate or remove this latent hub-centric bias thereby demonstrating exactly which features of preferential attachment networks are atypical of the broader class of scale-free networks. We are also able to statistically demonstrate whether real networks are typical realizations of scale-free networks, or networks with that particular degree distribution; using a new surrogate generation method for complex networks, exactly analogous the widely used surrogate tests of nonlinear time series analysis. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:182 / 197
页数:16
相关论文
共 50 条
  • [31] Dynamical advantages of scale-free networks
    Willeboordse, FH
    [J]. PHYSICAL REVIEW LETTERS, 2006, 96 (01)
  • [32] Scale-free growing networks and gravity
    Nieto, J. A.
    [J]. REVISTA MEXICANA DE FISICA, 2013, 59 (03) : 201 - 204
  • [33] Spectra of weighted scale-free networks
    Zhang, Zhongzhi
    Guo, Xiaoye
    Yi, Yuhao
    [J]. SCIENTIFIC REPORTS, 2015, 5
  • [34] Hub synchronization in scale-free networks
    Pereira, Tiago
    [J]. PHYSICAL REVIEW E, 2010, 82 (03)
  • [35] On the dynamics of scale-free Boolean networks
    Serra, R
    Villani, M
    Agostini, L
    [J]. NEURAL NETS, 2003, 2859 : 43 - 49
  • [36] Scale-free wireless sensor networks
    Chia, Kim Boon
    Su, Weilian
    Ha, Tri T.
    [J]. PROCEEDINGS OF THE SIXTH IASTED INTERNATIONAL MULTI-CONFERENCE ON WIRELESS AND OPTICAL COMMUNICATIONS, 2006, : 475 - +
  • [37] The Concept of Elasticity of Scale-Free Networks
    Shergin, Vadim
    Chala, Larysa
    [J]. 2017 4TH INTERNATIONAL SCIENTIFIC-PRACTICAL CONFERENCE PROBLEMS OF INFOCOMMUNICATIONS-SCIENCE AND TECHNOLOGY (PIC S&T), 2017, : 257 - 260
  • [38] Synchronization in interacting scale-free networks
    Torres, M. F.
    Di Muro, M. A.
    La Rocca, C. E.
    Braunstein, L. A.
    [J]. EPL, 2015, 111 (04)
  • [39] An improved scale-free networks model
    Wang, Ting
    Cai, Guoyong
    Huang, Xiong
    [J]. MODERN COMPUTER SCIENCE AND APPLICATIONS (MCSA 2016), 2016, : 309 - 316
  • [40] Scale-free networks of earthquakes and aftershocks
    Baiesi, M
    Paczuski, M
    [J]. PHYSICAL REVIEW E, 2004, 69 (06):