Prediction of cryogenic temperature impact on the performance of space-borne IR sensors

被引:0
|
作者
Xu, Xiaojian [1 ]
Shi, Xiaowei [1 ]
机构
[1] BeiHang Univ, Sch Elect & Informat Engn, Beijing 100083, Peoples R China
关键词
IR sensor; cryogenic temperature; space-borne; sensitivity; background; FPA;
D O I
10.1117/12.735107
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The sensitivity of a sensor system and its optical aperture size are two key parameters commonly used to characterize the performance of a remote sensing or space-borne surveillance system. In this work, a sensitivity model for space-borne staring IR sensor systems which are mainly used for point-source detection and identification is developed. Different noise components, including the photon noise from background radiation and near-field thermal radiation of optics, the electronic noise of sensors, as well as the nonuniformity noise of an infrared focal plane array (FPA), are considered. Based on the published parameters of the Multispectral Thermal Imager (MTI) electro-optic sensor system, the feasibility and validity of the model are demonstrated, with emphasis on the prediction of the cryogenic temperature impact on the sensor sensitivity and the optical aperture size requirement in a space-borne multispectral infrared (IR) system.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Instrumentation for the next-generation cryogenic space-borne far-IR observatories
    Bradford, C. Matt
    Goldsmith, Paul F.
    Dragovan, Mark
    Kenyon, Matt
    Holmes, Warren
    Yorke, Harold
    [J]. UV/OPTICAL/IR SPACE TELESCOPES: INNOVATIVE TECHNOLOGIES AND CONCEPTS III, 2007, 6687
  • [2] Comparison of two types of optical systems for Space-borne Staring IR Sensors
    Li Yan
    Zheng Guo-xian
    [J]. INTERNATIONAL SYMPOSIUM ON PHOTOELECTRONIC DETECTION AND IMAGING 2011: ADVANCES IN INFRARED IMAGING AND APPLICATIONS, 2011, 8193
  • [3] A cryogenic platform for space-borne instruments with nanoKelvin stability
    Holmes, W
    Bamford, R
    Chui, TCP
    Craig, J
    Elliott, S
    Galloway, S
    Gannon, J
    Park, S
    Rentz, P
    Thomassen, J
    [J]. ADVANCES IN CRYOGENIC ENGINEERING, VOL 47, PTS A AND B, 2002, 613 : 1249 - 1259
  • [4] Comparing different space-borne sensors and methods for the retrieval of land surface temperature
    Rehman A.U.
    Ullah S.
    Liu Q.
    Khan M.S.
    [J]. Earth Science Informatics, 2021, 14 (2) : 985 - 995
  • [5] EXPOSURE TIME FOR SPACE-BORNE IR SPATIAL INTERFEROMETER
    WOLFE, RH
    SIMPSON, RS
    [J]. APPLIED OPTICS, 1979, 18 (02): : 228 - 232
  • [6] Harmonization of Space-Borne Infra-Red Sensors Measuring Sea Surface Temperature
    Merchant, Christopher J.
    Block, Thomas
    Corlett, Gary K.
    Embury, Owen
    Mittaz, Jonathan P. D.
    Mollard, James D. P.
    [J]. REMOTE SENSING, 2020, 12 (06)
  • [7] Design of Performance Test System and Analysis of Temperature Dependence for Space-Borne Array CCD
    Yao Pingping
    Xu Sunlong
    Tu Bihai
    Yu Xinyu
    Cui Shanshan
    Luo Donggen
    Hong Jin
    [J]. CHINESE JOURNAL OF LASERS-ZHONGGUO JIGUANG, 2020, 47 (09):
  • [8] HIGH-TC THERMAL BRIDGES FOR SPACE-BORNE CRYOGENIC INFRARED DETECTORS
    WISE, SA
    BUCKLEY, JD
    NOLT, I
    HOOKER, MW
    HAERTLING, GH
    SELIM, R
    CATON, R
    BUONCRISTIANI, AM
    [J]. APPLIED SUPERCONDUCTIVITY, 1993, 1 (7-9) : 1363 - 1372
  • [9] Performance Demonstration of NSPO Space-borne GPS Receiver
    Chang, Hung-Yuan
    Chang, Hao-Chi
    Lin, Chen-Tsung
    [J]. PROCEEDINGS OF THE 26TH INTERNATIONAL TECHNICAL MEETING OF THE SATELLITE DIVISION OF THE INSTITUTE OF NAVIGATION (ION GNSS 2013), 2013, : 3368 - 3377
  • [10] Space-borne polarimetric SAR sensors or the golden age of radar polarimetry
    Pottier, E.
    [J]. API'09 - FIRST NANOCHARM WORKSHOP ON ADVANCED POLARIMETRIC INSTRUMENTATION, 2010, 5