Targeted enrichment of 28Si thin films for quantum computing

被引:9
|
作者
Tang, K. [1 ,2 ]
Kim, H. S. [2 ,3 ]
Ramanayaka, A. N. [2 ]
Simons, D. S. [2 ]
Pomeroy, J. M. [2 ]
机构
[1] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20740 USA
[2] NIST, Gaithersburg, MD 20899 USA
[3] Univ Maryland, Dept Elect & Comp Engn, College Pk, MD 20740 USA
来源
JOURNAL OF PHYSICS COMMUNICATIONS | 2020年 / 4卷 / 03期
关键词
isotope enrichment; semiconductor materials; quantum information; molecular beam epitaxy; thin films; SILICON; INFORMATION;
D O I
10.1088/2399-6528/ab7b33
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We report on the growth of isotopically enriched Si-28 epitaxial films with precisely controlled enrichment levels, ranging from natural abundance ratio of 92.2% all the way to 99.99987% (0.832 x 10(-6) mol mol(-1 29)Si). Isotopically enriched Si-28 is regarded as an ideal host material for semiconducting quantum computing due to the lack of Si-29 nuclear spins. However, the detailed mechanisms for quantum decoherence and the exact level of enrichment needed for quantum computing remain unknown. Here we use hyperthermal energy ion beam deposition with silane gas to deposit epitaxial Si-28. We switch the mass selective magnetic field periodically to control the Si-29 concentration. We develop a model to predict the residual Si-29 isotope fraction based on deposition parameters and measure the deposited film using secondary ion mass spectrometry (SIMS). The measured Si-29 concentrations show excellent agreement with the prediction, deviating on average by only 10%.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] High enrichment of 28Si by infrared multiple photon decomposition of Si2F6
    Yokoyama, A
    Ohba, H
    Shibata, T
    Kawanishi, S
    Sugimoto, S
    Ishii, T
    Ohya, A
    Miyamoto, Y
    Isomura, S
    Arai, S
    JOURNAL OF NUCLEAR SCIENCE AND TECHNOLOGY, 2002, 39 (04) : 457 - 462
  • [22] Few electron double quantum dot in an isotopically purified 28Si quantum well
    Wild, A.
    Kierig, J.
    Sailer, J.
    Ager, J. W., III
    Haller, E. E.
    Abstreiter, G.
    Ludwig, S.
    Bougeard, D.
    APPLIED PHYSICS LETTERS, 2012, 100 (14)
  • [23] A compact, ultra-high vacuum ion source for isotopically enriching and depositing 28Si thin films
    Tang, K.
    Kim, H. S.
    Ramanayaka, A. N. R.
    Simons, D. S.
    Pomeroy, J. M.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2019, 90 (08):
  • [24] Resonances in 28Si populated in the 12C(20Ne, 28Si*)α reaction
    Metelko, CJ
    Freer, M
    Murgatroyd, JT
    Singer, SM
    Henderson, DJ
    Hofman, DJ
    Wuosmaa, AH
    JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2003, 29 (04) : 697 - 708
  • [25] Influence of the deformation and orientation on the interaction potential of the 28Si + 28Si system and its fusion process
    Self, W. M.
    Ismail, M.
    Abdul-Magead, I. A. M.
    Fareed, F. A.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS E, 2019, 28 (1-2):
  • [26] STUDY OF 28SI LEVELS USING 29SI(3HE ALPHA)28SI REACTION
    FOU, CM
    ZURMUHLE, RW
    SWENSON, LW
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1968, 13 (01): : 86 - &
  • [27] GIANT RESONANCE ELECTROEXCITATION IN 28SI
    GULKAROV, IS
    AFANASYEV, NG
    SAVITSKY, GA
    KHVASTUNOV, VM
    SHEVCHENKO, NG
    PHYSICS LETTERS B, 1968, B 27 (07) : 417 - +
  • [28] COULOMB EXCITATION OF 28SI PROJECTILES
    HAUSSER, O
    ALEXANDER, TK
    PELTE, D
    HOOTON, BW
    EVANS, HC
    PHYSICAL REVIEW LETTERS, 1969, 23 (06) : 320 - +
  • [29] Candidate superdeformed band in 28Si
    Jenkins, D. G.
    Lister, C. J.
    Carpenter, M. P.
    Chowdury, P.
    Hammond, N. J.
    Janssens, R. V. F.
    Khoo, T. L.
    Lauritsen, T.
    Seweryniak, D.
    Davinson, T.
    Woods, P. J.
    Jokinen, A.
    Penttila, H.
    Haas, F.
    Courtin, S.
    PHYSICAL REVIEW C, 2012, 86 (06):
  • [30] SHAPE COEXISTENCE AND SUPERDEFORMATION IN 28Si
    Frycz, D.
    Menendez, J.
    Thoa, A.
    Romero, A. M.
    ACTA PHYSICA POLONICA B PROCEEDINGS SUPPLEMENT, 2024, 17 (03)