Classification of longitudinal data through a semiparametric mixed-effects model based on lasso-type estimators

被引:10
|
作者
Arribas-Gil, Ana [1 ]
De la Cruz, Rolando [2 ,3 ,4 ]
Lebarbier, Emilie [5 ,6 ]
Meza, Cristian [7 ]
机构
[1] Univ Carlos III Madrid, Dept Estadist, E-28903 Getafe, Spain
[2] Pontificia Univ Catolica Chile, Adv Ctr Chron Dis ACCDiS, Santiago, Chile
[3] Pontificia Univ Catolica Chile, Dept Publ Hlth, Sch Med, Santiago, Chile
[4] Pontificia Univ Catolica Chile, Dept Stat, Fac Math, Santiago, Chile
[5] AgroParisTech UMR518, Paris 5E, France
[6] INRA UMR518, Paris 5E, France
[7] Univ Valparaiso, CIMFAV Fac Ingn, Valparaiso, Chile
关键词
Classification; EM algorithm; Lasso; Longitudinal data; Mixed-effects models; Semiparametric estimation; MEASUREMENT ERRORS; AGGREGATION; LIKELIHOOD; SPARSITY;
D O I
10.1111/biom.12280
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We propose a classification method for longitudinal data. The Bayes classifier is classically used to determine a classification rule where the underlying density in each class needs to be well modeled and estimated. This work is motivated by a real dataset of hormone levels measured at the early stages of pregnancy that can be used to predict normal versus abnormal pregnancy outcomes. The proposed model, which is a semiparametric linear mixed-effects model (SLMM), is a particular case of the semiparametric nonlinear mixed-effects class of models (SNMM) in which finite dimensional (fixed effects and variance components) and infinite dimensional (an unknown function) parameters have to be estimated. In SNMM's maximum likelihood estimation is performed iteratively alternating parametric and nonparametric procedures. However, if one can make the assumption that the random effects and the unknown function interact in a linear way, more efficient estimation methods can be used. Our contribution is the proposal of a unified estimation procedure based on a penalized EM-type algorithm. The Expectation and Maximization steps are explicit. In this latter step, the unknown function is estimated in a nonparametric fashion using a lasso-type procedure. A simulation study and an application on real data are performed.
引用
收藏
页码:333 / 343
页数:11
相关论文
共 50 条
  • [1] LASSO-type estimators for semiparametric nonlinear mixed-effects models estimation
    Arribas-Gil, Ana
    Bertin, Karine
    Meza, Cristian
    Rivoirard, Vincent
    [J]. STATISTICS AND COMPUTING, 2014, 24 (03) : 443 - 460
  • [2] LASSO-type estimators for semiparametric nonlinear mixed-effects models estimation
    Ana Arribas-Gil
    Karine Bertin
    Cristian Meza
    Vincent Rivoirard
    [J]. Statistics and Computing, 2014, 24 : 443 - 460
  • [3] A semiparametric mixed-effects model for censored longitudinal data
    Mattos, Thalita B.
    Matos, Larissa Avila
    Lachos, Victor H.
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2021, 30 (12) : 2582 - 2603
  • [4] Flexible Bayesian semiparametric mixed-effects model for skewed longitudinal data
    Ferede, Melkamu M.
    Dagne, Getachew A.
    Mwalili, Samuel M.
    Bilchut, Workagegnehu H.
    Engida, Habtamu A.
    Karanja, Simon M.
    [J]. BMC MEDICAL RESEARCH METHODOLOGY, 2024, 24 (01)
  • [5] Flexible Bayesian semiparametric mixed-effects model for skewed longitudinal data
    Melkamu M. Ferede
    Getachew A. Dagne
    Samuel M. Mwalili
    Workagegnehu H. Bilchut
    Habtamu A. Engida
    Simon M. Karanja
    [J]. BMC Medical Research Methodology, 24
  • [6] Mixed-effects Model For Classification And Prediction In Longitudinal Data Analysis
    Poddar, Mukund
    Harigovind, Gautam
    [J]. 2018 INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND SYSTEMS BIOLOGY (BSB), 2018, : 36 - 39
  • [7] A semiparametric Bayesian to Poisson mixed-effects model for Epileptics data
    Duan, Xingde
    Liang, Lin
    Wu, Ying
    [J]. 2014 SEVENTH INTERNATIONAL JOINT CONFERENCE ON COMPUTATIONAL SCIENCES AND OPTIMIZATION (CSO), 2014, : 40 - 44
  • [8] A semiparametric Bayesian approach to binomial distribution logistic mixed-effects models for longitudinal data
    Zhao, Yuanying
    Xu, Dengke
    Duan, Xingde
    Du, Jiang
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2022, 92 (07) : 1438 - 1456
  • [9] A new mixed-effects mixture model for constrained longitudinal data
    Di Brisco, Agnese Maria
    Migliorati, Sonia
    [J]. STATISTICS IN MEDICINE, 2020, 39 (02) : 129 - 145
  • [10] Linear mixed-effects model for multivariate longitudinal compositional data
    Wang, Zhichao
    Wang, Huiwen
    Wang, Shanshan
    [J]. NEUROCOMPUTING, 2019, 335 : 48 - 58