Hierarchical Bayes estimation of spatial statistics for rates

被引:22
|
作者
Torabi, Mahmoud [1 ]
机构
[1] Univ Manitoba, Winnipeg, MB R3E 0W3, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Geographical variation; Hierarchical Bayes; Mixed effect model; Model adequacy; Time series; ISSUES;
D O I
10.1016/j.jspi.2011.07.026
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The U.S. Bureau of Labour Statistics publishes monthly unemployment rate estimates for its 50 states, the District of Columbia, and all counties, under Current Population Survey. However, the unemployment rate estimates for some states are unreliable due to low sample sizes in these states. Datta et al. (1999) proposed a hierarchical Bayes (HB) method using a time series generalization of a widely used cross-sectional model in small-area estimation. However, the geographical variation is also likely to be important. To have an efficient model, a comprehensive mixed normal model that accounts for the spatial and temporal effects is considered. A FIB approach using Markov chain Monte Carlo is used for the analysis of the U.S. state-level unemployment rate estimates for January 2004-December 2007. The sensitivity of such type of analysis to prior assumptions in the Gaussian context is also studied. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:358 / 365
页数:8
相关论文
共 50 条
  • [41] Uncertainty estimation by convolution using spatial statistics
    Sanchez-Brea, Luis Miguel
    Bernabeu, Eusebio
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2006, 15 (10) : 3131 - 3137
  • [42] Neuro-fuzzy estimation in spatial statistics
    Lee, ES
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 249 (01) : 221 - 231
  • [43] Form error estimation using spatial statistics
    Yang, TH
    Jackman, J
    [J]. JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING-TRANSACTIONS OF THE ASME, 2000, 122 (01): : 262 - 272
  • [44] Electromagnetic fields estimation using spatial statistics
    De Doncker, P
    Dricot, JM
    Meys, R
    Hélier, M
    Tabbara, W
    [J]. ELECTROMAGNETICS, 2006, 26 (02) : 111 - 122
  • [45] A Bayesian Hierarchical Spatial Longitudinal Model Improves Estimation of Local Macular Rates of Change in Glaucoma Eyes
    Su, Erica
    Mohammadzadeh, Vahid
    Mohammadi, Massood
    Shi, Lynn
    Law, Simon K.
    Coleman, Anne L.
    Caprioli, Joseph
    Weiss, Robert E.
    Nouri-Mahdavi, Kouros
    [J]. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2022, 63 (07)
  • [46] A Bayesian Hierarchical Spatial Longitudinal Model Improves Estimation of Local Macular Rates of Change in Glaucomatous Eyes
    Su, Erica
    Mohammadzadeh, Vahid
    Mohammadi, Massood
    Shi, Lynn
    Law, Simon K.
    Coleman, Anne L.
    Caprioli, Joseph
    Weiss, Robert E.
    Nouri-Mahdavi, Kouros
    [J]. TRANSLATIONAL VISION SCIENCE & TECHNOLOGY, 2024, 13 (01):
  • [47] Hierarchical disparity estimation using spatial correlation
    Lin, CW
    Fei, EY
    Chen, YC
    [J]. IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 1998, 44 (03) : 630 - 637
  • [48] Hierarchical spatial modeling for estimation of population size
    Jarrett J. Barber
    Alan E. Gelfand
    [J]. Environmental and Ecological Statistics, 2007, 14 : 193 - 205
  • [49] Hierarchical spatial modeling for estimation of population size
    Barber, Jarrett J.
    Gelfand, Alan E.
    [J]. ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2007, 14 (03) : 193 - 205
  • [50] Examining the structure of spatial health effects in Germany using Hierarchical Bayes Models
    Eibich, Peter
    Ziebarth, Nicolas R.
    [J]. REGIONAL SCIENCE AND URBAN ECONOMICS, 2014, 49 : 305 - 320