Coquasi-Bialgebras with Preantipode and Rigid Monoidal Categories

被引:2
|
作者
Saracco, Paolo [1 ]
机构
[1] Univ Libre Bruxelles, Dept Math, Blvd Triomphe, B-1050 Brussels, Belgium
关键词
Coquasi-bialgebra; Preantipode; Coquasi-Hopf algebra; Rigid monoidal category; Tensor functor; Reconstruction; QUASI; ALGEBRAS;
D O I
10.1007/s10468-019-09931-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By a theorem of Majid, every monoidal category with a neutral quasi-monoidal functor to finitely generated and projective k-modules gives rise to a coquasi-bialgebra. We prove that if the category is also rigid, then the associated coquasi-bialgebra admits a preantipode, providing in this way an analogue for coquasi-bialgebras of Ulbrich's reconstruction theorem for Hopf algebras. When k is a field, this allows us to characterize coquasi-Hopf algebras as well in terms of rigidity of finite-dimensional corepresentations.
引用
收藏
页码:55 / 80
页数:26
相关论文
共 50 条
  • [31] Monoidal categories and functors
    不详
    Journal of Mathematical Sciences, 1998, 88 (4) : 458 - 472
  • [32] LANGUAGES FOR MONOIDAL CATEGORIES
    JAY, CB
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1989, 59 (01) : 61 - 85
  • [33] ADJUNCTIONS IN MONOIDAL CATEGORIES
    LINDNER, H
    MANUSCRIPTA MATHEMATICA, 1978, 26 (1-2) : 123 - 139
  • [34] A note on the biadjunction between 2-categories of traced monoidal categories and tortile monoidal categories
    Hasegawa, Masahito
    Katsumata, Shin-Ya
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2010, 148 : 107 - 109
  • [35] Autonomization of monoidal categories
    Delpeuch, Antonin
    ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2020, (323): : 24 - 43
  • [36] Involutive Monoidal Categories
    Yau, Donald
    INVOLUTIVE CATEGORY THEORY, 2020, 2279 : 71 - 105
  • [37] Traced monoidal categories
    Joyal, A
    Street, R
    Verity, D
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1996, 119 : 447 - 468
  • [38] DESCENT IN MONOIDAL CATEGORIES
    Mesablishvili, Bachuki
    THEORY AND APPLICATIONS OF CATEGORIES, 2012, 27 : 210 - 221
  • [39] BIPRODUCTS IN MONOIDAL CATEGORIES
    Zekic, Mladen
    PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2021, 110 (124): : 1 - 9
  • [40] AFFINIZATION OF MONOIDAL CATEGORIES
    Mousaaid, Youssef
    Savage, Alistair
    JOURNAL DE L ECOLE POLYTECHNIQUE-MATHEMATIQUES, 2021, 8 : 791 - 829