Coquasi-Bialgebras with Preantipode and Rigid Monoidal Categories

被引:2
|
作者
Saracco, Paolo [1 ]
机构
[1] Univ Libre Bruxelles, Dept Math, Blvd Triomphe, B-1050 Brussels, Belgium
关键词
Coquasi-bialgebra; Preantipode; Coquasi-Hopf algebra; Rigid monoidal category; Tensor functor; Reconstruction; QUASI; ALGEBRAS;
D O I
10.1007/s10468-019-09931-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By a theorem of Majid, every monoidal category with a neutral quasi-monoidal functor to finitely generated and projective k-modules gives rise to a coquasi-bialgebra. We prove that if the category is also rigid, then the associated coquasi-bialgebra admits a preantipode, providing in this way an analogue for coquasi-bialgebras of Ulbrich's reconstruction theorem for Hopf algebras. When k is a field, this allows us to characterize coquasi-Hopf algebras as well in terms of rigidity of finite-dimensional corepresentations.
引用
收藏
页码:55 / 80
页数:26
相关论文
共 50 条
  • [1] Coquasi-Bialgebras with Preantipode and Rigid Monoidal Categories
    Paolo Saracco
    Algebras and Representation Theory, 2021, 24 : 55 - 80
  • [2] Cohomology and coquasi-bialgebras in the category of Yetter-Drinfeld modules
    Angiono, Ivan
    Ardizzoni, Alessandro
    Menini, Claudia
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2017, 17 (02) : 609 - 653
  • [3] WEAK BIALGEBRAS AND MONOIDAL CATEGORIES
    Boehm, G.
    Caenepeel, S.
    Janssen, K.
    COMMUNICATIONS IN ALGEBRA, 2011, 39 (12) : 4584 - 4607
  • [4] QUIVER BIALGEBRAS AND MONOIDAL CATEGORIES
    Huang, Hua-Lin
    Torrecillas, Blas
    COLLOQUIUM MATHEMATICUM, 2013, 131 (02) : 287 - 300
  • [5] Multiplier bialgebras in braided monoidal categories
    Boehm, Gabriella
    Lack, Stephen
    JOURNAL OF ALGEBRA, 2015, 423 : 853 - 889
  • [6] (WEAK) INCIDENCE BIALGEBRAS OF MONOIDAL CATEGORIES
    Kraehmer, Ulrich
    Rotheray, Lucia
    GLASGOW MATHEMATICAL JOURNAL, 2021, 63 (01) : 139 - 157
  • [7] Monoidal categories of comodules for coquasi Hopf algebras and Radford's formula
    Ferrer Santos, Walter
    Franco, Ignacio Lopez
    ALGEBRAS, REPRESENTATIONS AND APPLICATIONS, 2009, 483 : 107 - +
  • [8] On Solid and Rigid Monoids in Monoidal Categories
    Javier J. Gutiérrez
    Applied Categorical Structures, 2015, 23 : 575 - 589
  • [9] On Solid and Rigid Monoids in Monoidal Categories
    Gutierrez, Javier J.
    APPLIED CATEGORICAL STRUCTURES, 2015, 23 (04) : 575 - 589
  • [10] ON FROBENIUS ALGEBRAS IN RIGID MONOIDAL CATEGORIES
    Fuchs, Jurgen
    Stigner, Carl
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2008, 33 (2C): : 175 - 191